CABRI® G2
Flight Manual

Helicopter serial N° : ..

Helicopter registration :

EASA Type certificate N° R.145

Section 2, 3, 4, 5 and 9 are approved by EASA
Other sections are approved under Hélicoptères Guimbal DOA EASA.21J.211

This flight manual includes the material required to be furnished to the pilot by EASA CS 27 and Part 21

This manual should not be used for any operation or instruction, unless it is in current status.
The helicopter’s operator is responsible for maintaining this manual in a current status in accordance with the list of current pages.

GUIMBAL
AIX-EN-PROVENCE, FRANCE

www.guimbal.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>SECTION 1</td>
<td>GENERAL</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td></td>
<td>THREE-VIEW OF THE CABRI G2</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTIVE DATA</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>SYMBOLS AND ABBREVIATIONS</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>CONVERSION FACTORS</td>
<td>1-7</td>
</tr>
<tr>
<td>SECTION 2</td>
<td>LIMITATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>GENERAL LIMITATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td></td>
<td>COLOR CODE FOR INSTRUMENT MARKINGS</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>FLIGHT ENVELOPE LIMITATIONS</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>POWERPLANT LIMITATIONS</td>
<td>2-4</td>
</tr>
<tr>
<td></td>
<td>TRANSMISSION LIMITATIONS</td>
<td>2-7</td>
</tr>
<tr>
<td></td>
<td>WEIGHT AND BALANCE LIMITATIONS (IMPERIAL UNITS)</td>
<td>2-8</td>
</tr>
<tr>
<td></td>
<td>WEIGHT AND BALANCE LIMITATIONS (METRIC UNITS)</td>
<td>2-9</td>
</tr>
<tr>
<td></td>
<td>SENSORS FAILURES</td>
<td>2-10</td>
</tr>
<tr>
<td></td>
<td>PLACARDS</td>
<td>2-11</td>
</tr>
<tr>
<td>SECTION 3</td>
<td>EMERGENCY PROCEDURES</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>3-1</td>
</tr>
<tr>
<td></td>
<td>POWER FAILURES</td>
<td>3-2</td>
</tr>
<tr>
<td></td>
<td>DITCHING</td>
<td>3-4</td>
</tr>
<tr>
<td></td>
<td>IN-FLIGHT ENGINE RESTART</td>
<td>3-5</td>
</tr>
<tr>
<td></td>
<td>ENGINE FIRE</td>
<td>3-6</td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL FIRE</td>
<td>3-7</td>
</tr>
<tr>
<td></td>
<td>TAIL ROTOR FAILURE</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>YAW CONTROL FAILURE</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>ENGINE GOVERNOR FAILURE</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>EPM FAILURES</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>AURAL WARNINGS</td>
<td>3-12</td>
</tr>
<tr>
<td></td>
<td>EPM PARAMETERS OUT OF LIMITATIONS</td>
<td>3-12</td>
</tr>
<tr>
<td></td>
<td>EPM ALARMS</td>
<td>3-14</td>
</tr>
<tr>
<td></td>
<td>CAUTION / WARNING LIGHTS</td>
<td>3-15</td>
</tr>
<tr>
<td>SECTION 4</td>
<td>NORMAL PROCEDURES</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>GENERAL</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>AIRSPEEDS FOR SAFE OPERATION</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>DOORS</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>DOORS-LOCK AND ANTI-THEFT</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>BEFORE FLIGHT</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>DAILY OR PRE-FLIGHT CHECKS</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>INTER-FLIGHT CHECK</td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>BEFORE STARTING ENGINE</td>
<td>4-9</td>
</tr>
<tr>
<td></td>
<td>STARTING THE ENGINE</td>
<td>4-11</td>
</tr>
<tr>
<td></td>
<td>BEFORE TAKE-OFF</td>
<td>4-12</td>
</tr>
<tr>
<td></td>
<td>TAKE-OFF PROCEDURE</td>
<td>4-13</td>
</tr>
</tbody>
</table>
TABLE OF CONTENT

SECTION 9 SUPPLEMENTS

CLIMB ... 4-14
CRUISE AND/OR LEVEL FLIGHT ... 4-14
FLIGHT TIME MANAGEMENT... 4-14
FUEL QUANTITY MANAGEMENT WITH ALTERNATE FUEL 4-15
APPROACH AND LANDING .. 4-16
ENGINE / ROTOR SHUTDOWN... 4-16
DISENGAGEMENT WITH ENGINE OFF .. 4-16
TRAINING ... 4-17

SECTION 5 PERFORMANCE ... 5-1
AIRSPEED CALIBRATION ... 5-1
ROTOR STARTING AND STOPPING LIMIT ... 5-2
HEIGHT-VELOCITY DIAGRAM .. 5-3
HOVER OUT OF GROUND EFFECT ... 5-4
HOVER IN GROUND EFFECT ... 5-5
RATE OF CLIMB AT VY = 50 KT IAS ... 5-6
TAKE OFF DISTANCE .. 5-10
GLIDE DISTANCE IN AUTOROTATION .. 5-10
SOUND EXPOSURE LEVEL ... 5-10

SECTION 6 WEIGHT AND BALANCE .. 6-1
GENERAL ... 6-1
CENTER OF GRAVITY, STANDARD DEFINITIONS ... 6-3
WEIGHT AND CG POSITION DETERMINATION ... 6-4

SECTION 7 SYSTEMS DESCRIPTION ... 7-1
AIRFRAME .. 7-1
DYNAMIC SYSTEMS ... 7-2
ENGINE INSTALLATION .. 7-5
ELECTRICAL CIRCUIT ... 7-7
ELECTRONIC PILOT MONITOR - EPM ... 7-11
BARC .. 7-17
OTHER EQUIPMENTS .. 7-18
CABIN AND AMENITIES .. 7-20

SECTION 8 HANDLING AND SERVICING ... 8-1
GENERAL ... 8-1
FUEL .. 8-1
ENGINE OIL ... 8-1
GEARBOXES OIL ... 8-1
GROUND HANDLING ... 8-1
PARKING AND TIE-DOWN .. 8-2
JUMP-STARTING THE ENGINE ... 8-2
DOORS REMOVAL AND INSTALLATION ... 8-2

D Approved under DOA EASA.21J.211 Issue 08
Section 0 Introduction

This document is the Pilot Operating Handbook and EASA approved rotorcraft Flight Manual of the CABRI G2 Rotorcraft.

The following tables give the list of approved pages and the list of changes.

For flight manual supplements tables (approved pages and revisions log), refer to Section 9.

If rotorcraft is operated under FAA certification, this manual should be updated with some FAA specific pages, numbered with “B”, replacing original ones.

The following table gives EASA approved pages.

<table>
<thead>
<tr>
<th>Page number</th>
<th>Issue number</th>
<th>Page number</th>
<th>Issue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 2 Limitations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>08</td>
<td>2-i</td>
<td>08</td>
</tr>
<tr>
<td>2-2</td>
<td>08</td>
<td>2-ii</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-7</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-8</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-9</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-10</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-12</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-13</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-14</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 3 Emergency procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td></td>
<td>3-i</td>
<td></td>
</tr>
<tr>
<td>3-2</td>
<td></td>
<td>3-ii</td>
<td></td>
</tr>
<tr>
<td>3-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-5</td>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-7</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-8</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-9</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-10</td>
<td>09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-11</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-12</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-13</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-14</td>
<td>05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-15</td>
<td>09.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-16</td>
<td>08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page number</td>
<td>Issue number</td>
<td>Page number</td>
<td>Issue number</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Section 4 Normal procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td>09</td>
<td>4-1</td>
<td>08</td>
</tr>
<tr>
<td>4-2</td>
<td>09</td>
<td>4-2</td>
<td>09</td>
</tr>
<tr>
<td>4-3</td>
<td>09</td>
<td>4-3</td>
<td>09</td>
</tr>
<tr>
<td>4-4</td>
<td>09</td>
<td>4-4</td>
<td>09</td>
</tr>
<tr>
<td>4-5</td>
<td>07</td>
<td>4-5</td>
<td>07</td>
</tr>
<tr>
<td>4-6</td>
<td>09</td>
<td>4-6</td>
<td>09</td>
</tr>
<tr>
<td>4-7</td>
<td>09</td>
<td>4-7</td>
<td>09</td>
</tr>
<tr>
<td>4-8</td>
<td>09</td>
<td>4-8</td>
<td>09</td>
</tr>
<tr>
<td>4-9</td>
<td>08</td>
<td>4-9</td>
<td>08</td>
</tr>
<tr>
<td>4-10</td>
<td>09</td>
<td>4-10</td>
<td>09</td>
</tr>
<tr>
<td>4-11</td>
<td>08</td>
<td>4-11</td>
<td>08</td>
</tr>
<tr>
<td>4-12</td>
<td>05</td>
<td>4-12</td>
<td>05</td>
</tr>
<tr>
<td>4-13</td>
<td>05</td>
<td>4-13</td>
<td>05</td>
</tr>
<tr>
<td>4-14</td>
<td>09</td>
<td>4-14</td>
<td>09</td>
</tr>
<tr>
<td>4-15</td>
<td>09</td>
<td>4-15</td>
<td>09</td>
</tr>
<tr>
<td>4-16</td>
<td>09</td>
<td>4-16</td>
<td>08</td>
</tr>
<tr>
<td>4-17</td>
<td>08</td>
<td>4-17</td>
<td>08</td>
</tr>
<tr>
<td>4-18</td>
<td>05</td>
<td>4-18</td>
<td>05</td>
</tr>
<tr>
<td>4-19</td>
<td>09.2</td>
<td>4-19</td>
<td>09.2</td>
</tr>
<tr>
<td>4-20</td>
<td>05</td>
<td>4-20</td>
<td>05</td>
</tr>
<tr>
<td>Section 5 Performance</td>
<td>5-1</td>
<td>5-1</td>
<td>5-i</td>
</tr>
<tr>
<td>5-2</td>
<td>5-2</td>
<td>5-2</td>
<td>5-ii</td>
</tr>
<tr>
<td>5-3</td>
<td>5-3</td>
<td>5-3</td>
<td>5-ii</td>
</tr>
<tr>
<td>5-4</td>
<td>05</td>
<td>5-4</td>
<td>05</td>
</tr>
<tr>
<td>5-5</td>
<td>05</td>
<td>5-5</td>
<td>05</td>
</tr>
<tr>
<td>5-6</td>
<td>05</td>
<td>5-6</td>
<td>05</td>
</tr>
<tr>
<td>5-7</td>
<td>05</td>
<td>5-7</td>
<td>05</td>
</tr>
<tr>
<td>5-8</td>
<td>05</td>
<td>5-8</td>
<td>05</td>
</tr>
<tr>
<td>5-9</td>
<td>05</td>
<td>5-9</td>
<td>05</td>
</tr>
<tr>
<td>5-10</td>
<td>05</td>
<td>5-10</td>
<td>05</td>
</tr>
<tr>
<td>5-11</td>
<td>05</td>
<td>5-11</td>
<td>05</td>
</tr>
<tr>
<td>5-12</td>
<td>05</td>
<td>5-12</td>
<td>05</td>
</tr>
</tbody>
</table>
The following table gives the pages approved under DOA EASA.21J.211:

<table>
<thead>
<tr>
<th>Page number</th>
<th>Issue number</th>
<th>Page number</th>
<th>Issue number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table of content</td>
<td>B</td>
<td>C 08</td>
<td>D 08</td>
</tr>
<tr>
<td>Section 0</td>
<td></td>
<td>0-1 09.1</td>
<td>0-7 09</td>
</tr>
<tr>
<td>Introduction</td>
<td></td>
<td>0-2 09.2</td>
<td>0-8 09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-3 09.2</td>
<td>0-9 09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-4 09.2</td>
<td>0-10 09.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-5 09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-6 09</td>
<td></td>
</tr>
<tr>
<td>Section 1</td>
<td>1-1</td>
<td>1-i 09</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>1-2</td>
<td>1-ii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-3 03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-4 08</td>
<td>1-8 07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-6 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-7 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 6</td>
<td>6-1 03</td>
<td>6-i 08</td>
<td></td>
</tr>
<tr>
<td>Weight and balance</td>
<td>6-2</td>
<td>6-ii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-4 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-5 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-6 08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 7</td>
<td>7-1 09</td>
<td>7-i 03</td>
<td></td>
</tr>
<tr>
<td>Systems description</td>
<td>7-2</td>
<td>7-ii</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-3 03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-4 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-5 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-7 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-8 07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-9 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-10 05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-11 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-12 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-13 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-14 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page number</td>
<td>Issue number</td>
<td>Page number</td>
<td>Issue number</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Section 7 - Continued Systems description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-15</td>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-16</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-17</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-18</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-19</td>
<td>07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-20</td>
<td>03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 8 Handling and servicing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>05</td>
<td>8-i</td>
<td>05</td>
</tr>
<tr>
<td>8-2</td>
<td>09.2</td>
<td>8-ii</td>
<td></td>
</tr>
<tr>
<td>8-3</td>
<td>09.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-4</td>
<td>05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The reference of this flight manual is J40-001. The revisions are given in the following table:

<table>
<thead>
<tr>
<th>Issue number</th>
<th>Page</th>
<th>Revision object</th>
<th>Approval date</th>
<th>Approval reference (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>3-10</td>
<td>Carb heat manual test transferred to section 4</td>
<td>17/09/2008</td>
<td>EASA.R.A.01530</td>
</tr>
<tr>
<td></td>
<td>4-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-11</td>
<td>Normal procedure correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-5</td>
<td>Steep descent procedure suppressed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td>Addition of a STARTER caution light</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>Breaker panel update</td>
<td>16/09/2008</td>
<td>Approved under the authority of DOA EASA.21J.211</td>
</tr>
<tr>
<td></td>
<td>7-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>9-1</td>
<td>GPS</td>
<td>19/05/2009</td>
<td>Approved under DOA EASA.21J.211 according to FSA-09-003</td>
</tr>
<tr>
<td></td>
<td>9-2 to 9-4</td>
<td>Night VFR</td>
<td>19/05/2009</td>
<td>EASA.R.C.03230</td>
</tr>
<tr>
<td></td>
<td>9-5 to 9-10</td>
<td>Night VFR</td>
<td>19/05/2009</td>
<td>Approved under DOA EASA.21J.211 according to FSA-09-003</td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>Gage → charge</td>
<td>19/05/2009</td>
<td>EASA.R.C.03230</td>
</tr>
<tr>
<td></td>
<td>3-15</td>
<td>Clutch light</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-2</td>
<td>Procedure update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-3</td>
<td>Drive line → gearbox</td>
<td>19/05/2009</td>
<td>DOA EASA.21J.211</td>
</tr>
</tbody>
</table>

(*) EASA reference number or “approved under the authority of DOA EASA.21J.211”
<table>
<thead>
<tr>
<th>Issue number</th>
<th>Page</th>
<th>Revision object</th>
<th>Approval date</th>
<th>Approval reference (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>4-3</td>
<td>Tight → Lockwiring</td>
<td>19/05/2009</td>
<td>EASA.R.C.03230</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>Manifold → distributor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-9</td>
<td>Note suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-5</td>
<td></td>
<td>Modified clutching system description</td>
<td>19/05/2009</td>
<td>Approved under the authority of DOA EASA.21J.211 according to FSA-09-003</td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td>Typos : - battery breaker order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td></td>
<td>- Auxiliaries is push-pull</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-7 to 7-9 & 2-12</td>
<td>Note for optionals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-10</td>
<td></td>
<td>Battery breaker drawing correction. Add on ELT use.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-12</td>
<td></td>
<td>Explanation of EPM restart in welcome page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-13</td>
<td></td>
<td>Note for brightness equalization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-16</td>
<td></td>
<td>Explanation of re-initiation of testing sequence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-18</td>
<td></td>
<td>Code procedure update</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) EASA reference number or “approved under the authority of DOA EASA.21J.211”
<table>
<thead>
<tr>
<th>Issue number</th>
<th>Page</th>
<th>Revision object</th>
<th>Approval date</th>
<th>Approval reference (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>This issue is associated with MOD EPM 10-009.</td>
<td>Oil P. indicator</td>
<td>21/07/2010</td>
<td>EASA.R.C.03496</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>MLI supplements</td>
<td></td>
<td>Major modification approval 10031011</td>
</tr>
<tr>
<td></td>
<td>2-7</td>
<td>Carb. Heat proc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>Addition of socket</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-13</td>
<td>Note update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-7</td>
<td>Carb heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-11</td>
<td>Carb heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-12</td>
<td>Carb heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-13</td>
<td>Oil P yellow zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-14</td>
<td>Carb heat suppr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-12</td>
<td>Carb. Heat proc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-19</td>
<td>Proc. correction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-1</td>
<td>Limitation update.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-1, 1-3, 1-i, 7-i, 7-3, 7-9, 7-3, 7-13, C, D</td>
<td>Wording</td>
<td>07/06/2010</td>
<td>Approved under DOA EASA.21J.211 according to FSA 10-003.</td>
</tr>
<tr>
<td></td>
<td>7-11 7-13</td>
<td>Screenshot update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-16 >7-20</td>
<td>Carb heat, pages shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-18</td>
<td>Ref to night lights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>D, 0-1 to 0-4, Section 9</td>
<td>Supplements are managed independently</td>
<td>05/11/2010</td>
<td>Approved under DOA EASA.21J.211 according to FSA 10-011.</td>
</tr>
<tr>
<td>05</td>
<td>2-2, 4-9/11, 5-4 to -6, 5-8</td>
<td>-20°C extension</td>
<td>13/12/2010</td>
<td>Major modification approval 10032992</td>
</tr>
<tr>
<td></td>
<td>3-4/5/8/9 3-14 - 16 4-5/8/16 4-20, 2-4</td>
<td>Procedure update</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

<table>
<thead>
<tr>
<th>Issue number</th>
<th>Page</th>
<th>Revision object</th>
<th>Approval date</th>
<th>Approval reference (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>2-8/9</td>
<td>CG Update</td>
<td>13/12/2010</td>
<td>Major modification approval 10032992</td>
</tr>
<tr>
<td></td>
<td>2-13</td>
<td>Correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D, 2-1,</td>
<td>Update</td>
<td>13/12/2010</td>
<td>Approved under DOA EASA.21J.211 according to FSA 10-018</td>
</tr>
<tr>
<td></td>
<td>0-1/2/3/5,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-7, 7-8,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-9, 8-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-4/5</td>
<td>Level measurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-7/8</td>
<td>Fuel CG Correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-10</td>
<td>Direct battery breaker correction</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-i, 8-1 à 4</td>
<td>Doors removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>2-1</td>
<td>Authorisation for flight under snow</td>
<td>18/01/2013</td>
<td>EASA AFM approval 10043301</td>
</tr>
<tr>
<td></td>
<td>0-1, 0-3,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>0-1 to 0-4</td>
<td>Page revisions</td>
<td>12/03/2013</td>
<td>Approved under DOA EASA.21J.211</td>
</tr>
<tr>
<td></td>
<td>0-8-0-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-2, 0-6</td>
<td>Page 4-7 not modified at issue 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>Approved fuel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-6 to 1-8</td>
<td>New abbreviations and page shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5, 2-6</td>
<td>Limitations for additional fuels</td>
<td>05/03/2013</td>
<td>Major Change Approval EASA 10043929</td>
</tr>
<tr>
<td></td>
<td>2-12</td>
<td>Fuel placard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-13</td>
<td>Data & Tie-down placards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-4/9</td>
<td>Wording : "monitor" → "control"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-10</td>
<td>CPU overtemp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-13</td>
<td>Ref 3-15 → 3-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-15</td>
<td>GOV light update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-16</td>
<td>Table shift</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue number</td>
<td>Page</td>
<td>Revision object</td>
<td>Approval date</td>
<td>Approval reference (*)</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>07</td>
<td>4-2</td>
<td>Performance to be checked in chapter 5</td>
<td>05/03/2013</td>
<td>Major Change Approval EASA 10043929</td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>Winter air flow restrictor check</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-6</td>
<td>Line shifted from previous page</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-5</td>
<td>Weighing ref. point</td>
<td>12/03/2013</td>
<td>Approved under DOA EASA.21J.211</td>
</tr>
<tr>
<td></td>
<td>6-7, 6-8</td>
<td>Fuel density</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-4</td>
<td>Rotor brake description + wording: transmission → driveshaft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>“Interm.” → “Avionics” relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-12, 7-19</td>
<td>Rotor in Flying mode is page 7-17, not 7-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-13</td>
<td>Sensor page description</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-14</td>
<td>Error in Start indicator description</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-2</td>
<td>Tie down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>C</td>
<td>Pages # change</td>
<td>December 4th, 2014</td>
<td>EASA AFM Approval 10051479</td>
</tr>
<tr>
<td></td>
<td>0-1, 0-2, 0-3, 0-9, 0-10</td>
<td>Page revisions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>FAA engine STC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-i, 2-2</td>
<td>Page layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-1</td>
<td>Limitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-3</td>
<td>Transient low RPM limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-6</td>
<td>Lubricating oil recommendations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5, 4-i, D, 4-2, 4-15</td>
<td>Alternate fuel temporary use Temporary green pages integrated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Issue number</td>
<td>Page</td>
<td>Revision object</td>
<td>Approval date</td>
<td>Approval reference (*)</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>---</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>08</td>
<td>3-15, 3-16</td>
<td>Addition of name of colors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D, 6-i, 6-4, 6-5, 6-6</td>
<td>Weighing procedure suppression</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-3, 4-4, 4-6, 4-7</td>
<td>Daily checks update</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-9, 4-11, 7-7</td>
<td>Starting procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-16</td>
<td>Page layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-17</td>
<td>Autorotation training</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-7</td>
<td>Cranking logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-9</td>
<td>Radio conf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-11</td>
<td>EPM indications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“B” pages</td>
<td>2-1.B</td>
<td>Limitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>Precision on fuel management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-13, 2-14, 4-6, 4-8, 7-1</td>
<td>Left cabin luggage brackets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-4, 4-6, 4-7, 4-8, 6-4 6-5</td>
<td>Bear paws</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-10, 7-11 to 7-14</td>
<td>New EPM display software (1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-i, 1-7, 2-10, 4-2, 4-3, 4-15, 7-7, 7-9</td>
<td>wording</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(*) EASA reference number or “approved under the authority of DOA EASA.21J.211”
Hélicoptères Guimbal
CABRI G2

INTRODUCTION

<table>
<thead>
<tr>
<th>Issue number</th>
<th>Page</th>
<th>Revision object</th>
<th>Approval date</th>
<th>Approval reference (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09.2</td>
<td>0-2, 0-3, 0-4, 0-11, 0-12</td>
<td>Addition of log of issue & approved pages update</td>
<td>October 21st, 2015</td>
<td>Approved under DOA EASA.21J.211</td>
</tr>
<tr>
<td></td>
<td>4-19</td>
<td>Title wording</td>
<td></td>
<td>Validated for FAA through EASA validation support letter AGR/aro/CT.3/00600 45478-001, dated October 29th, 2015</td>
</tr>
<tr>
<td></td>
<td>8-2, 8-3</td>
<td>Doors with self-locking hinges removal & installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09.2 FAA only pages</td>
<td>0-1.B, 3-15.B</td>
<td>Correction of FAA only “B” pages</td>
<td>October 29th, 2015</td>
<td></td>
</tr>
</tbody>
</table>

(*) EASA reference number or “approved under the authority of DOA EASA.21J.211”
Section 1 General

INTRODUCTION.. 1-1
THREE-VIEW OF THE CABRI G2 .. 1-2
DESCRIPTIVE DATA ... 1-3
 Main rotor .. 1-3
 Tail rotor .. 1-3
 Transmission ... 1-3
 Powerplant .. 1-4
 Fuel ... 1-4
SYMBOLS AND ABBREVIATIONS ... 1-5
CONVERSION FACTORS .. 1-7
 Metric to Imperial/US units ... 1-7
 Imperial/US to metric units ... 1-7
Introduction

This Flight Manual is designed as an operating guide for the pilot. It includes material required to be furnished to the pilot by EASA CS 27 and Part 21. It also contains supplementary data supplied by the helicopter manufacturer.

This manual is intended to give the pilot the best possible information and to help him find the best answer to most operational situation. However, it cannot replace pilot’s appreciation of each particular situation. Pilot must maintain adequate ground and flight instruction, and good proficiency in the type of helicopter.

To achieve the required level of safety, the helicopter pilot-in-command must be familiar with this manual’s content, with other safety-related available information, and with all the regulation covering aircraft operation that are relevant in the country of operation. He is responsible for determining that the helicopter is safe for flight, and for operating it in respect to this manual and above information.

The helicopter’s owner is responsible for maintaining the aircraft in approved airworthy condition and for maintaining this manual in a current status in accordance with the list of current pages.
Three-view of the CABRI G2
Descriptive data

Main rotor

<table>
<thead>
<tr>
<th>Type</th>
<th>Articulated, soft-in-plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of blades</td>
<td>3</td>
</tr>
<tr>
<td>Diameter</td>
<td>7.20 m (23.6 feet)</td>
</tr>
<tr>
<td>Nominal rotor speed</td>
<td>530 RPM</td>
</tr>
<tr>
<td>Blade chord</td>
<td>180 mm (7.1 in)</td>
</tr>
</tbody>
</table>

Tail rotor

<table>
<thead>
<tr>
<th>Type</th>
<th>Shrouded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of blades</td>
<td>7</td>
</tr>
<tr>
<td>Diameter</td>
<td>600 mm (23.6 in)</td>
</tr>
<tr>
<td>Nominal rotor speed</td>
<td>5148 RPM</td>
</tr>
<tr>
<td>Blade chord</td>
<td>42 mm (1.6 in)</td>
</tr>
</tbody>
</table>

Transmission

<table>
<thead>
<tr>
<th>Primary transmission</th>
<th>Belt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.855/1 reducing ratio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main rotor gearbox</th>
<th>Spiral bevel gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/47 reducing ratio</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tail rotor gearbox</th>
<th>Spiral bevel gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/11 increasing ratio</td>
<td></td>
</tr>
</tbody>
</table>
Powerplant

Model .. Textron Lycoming O360-J2A with STC EASA.E.S.01001 / STC FAA SE03495NY

Type ... Four cylinders, horizontally opposed, direct drive, air cooled, normally-aspirated, carburetor-equipped, one magneto and one electronic ignition system

Displacement .. 5,9 L (361 cu.in)

Power rating (continuous) 108 kW @ 2585 through 2700 RPM (145 shp)

Nominal speed .. 2650 RPM

Cooling system Direct drive squirrel-cage blower

Ignition systems
Magneto .. Bendix
Electronic ignition system LSE Plasma II HG
 Solid-state capacitor discharge ignition system
 Variable timing advance

Fuel

Maximum fuel capacity .. 170 L (45 U.S. gal)

Unusable fuel .. 1.5 L (0.4 U.S. gal)

Approved types
AVGAS 100 LL .. Unrestricted
AVGAS UL 91 .. Unrestricted
(See Oil additive for break-in in Limitations section)

Alternate types
Automotive unleaded gasoline Refer to Limitations

Note : All these types are mixable, in any proportion.
Symbols and abbreviations

<table>
<thead>
<tr>
<th>Symbol or abbreviation</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speeds</td>
<td></td>
</tr>
<tr>
<td>CAS</td>
<td>Calibrated airspeed</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated airspeed</td>
</tr>
<tr>
<td>TAS</td>
<td>True airspeed</td>
</tr>
<tr>
<td>V_{NE}</td>
<td>Never-exceed speed</td>
</tr>
<tr>
<td>V_y</td>
<td>Best rate-of-climb speed</td>
</tr>
<tr>
<td>Meteorology</td>
<td></td>
</tr>
<tr>
<td>ISA</td>
<td>International standard atmosphere</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside air temperature</td>
</tr>
<tr>
<td>P</td>
<td>Outside air pressure</td>
</tr>
<tr>
<td>σ</td>
<td>Relative air density</td>
</tr>
<tr>
<td>Altitude / Height</td>
<td></td>
</tr>
<tr>
<td>AGL</td>
<td>Above ground level</td>
</tr>
<tr>
<td>Z</td>
<td>Geometric altitude</td>
</tr>
<tr>
<td>Z_p</td>
<td>Pressure altitude</td>
</tr>
<tr>
<td>Z_σ</td>
<td>Relative density altitude</td>
</tr>
<tr>
<td>h</td>
<td>Geometric height</td>
</tr>
<tr>
<td>Power / Engine parameters</td>
<td></td>
</tr>
<tr>
<td>FLO</td>
<td>First MLI limit is Full throttle limit</td>
</tr>
<tr>
<td>MCP</td>
<td>Maximum continuous power</td>
</tr>
<tr>
<td>MLI</td>
<td>Multiple limit indicator</td>
</tr>
<tr>
<td>NR</td>
<td>Rotor speed</td>
</tr>
<tr>
<td>NM</td>
<td>Engine speed</td>
</tr>
<tr>
<td>PWR</td>
<td>First MLI limit is Power limit</td>
</tr>
<tr>
<td>Hover / Take-off / Landing</td>
<td></td>
</tr>
<tr>
<td>IGE</td>
<td>In ground effect</td>
</tr>
<tr>
<td>OGE</td>
<td>Out of ground effect</td>
</tr>
<tr>
<td>HIGE</td>
<td>Hover in ground effect</td>
</tr>
<tr>
<td>HOGE</td>
<td>Hover out of ground effect</td>
</tr>
<tr>
<td>Weight and balance</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Centre of gravity</td>
</tr>
<tr>
<td>MTOW</td>
<td>Maximum take-off weight</td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
</tr>
<tr>
<td>EPM</td>
<td>Electronic Pilot Monitor</td>
</tr>
<tr>
<td>BARC</td>
<td>Boîtier Alarme Rotor et Carburant (Fuel and rotor alarm device)</td>
</tr>
<tr>
<td>RRM / GOV</td>
<td>Engine governor</td>
</tr>
</tbody>
</table>
Fuel
AKI = (RON + MON)/2 .. Anti-Knock Index
MON ... Motor Octane Number
RON .. Research Octane Number
RVP ... Reid Vapor Pressure

Miscellaneous
BB ... Battery breaker
CPU ... Central processing unit
H/V ... Height-Velocity
MGB ... Main gearbox
RPM ... Revolutions per minute
TGB ... Tail gearbox
VFR ... Visual flight rules
Conversion factors

Note: The Cabri G2 EPM display can be set to either Metric or Imperial units. Refer to page 7-13.

Metric to Imperial/US units

Multiply .. By .. To obtain
millimeters (mm) 0,0394 inches (in)
meters (m) 3,2808 feet (ft)
kilometers (km) 0,5400 nautical miles (nm)
kilograms (kg) 2,2046 pounds (lb)
liters (L) 0,2642 gallons, U.S. (U.S. gal)
liters (L) 1,0567 quarts (qt)
millibar (mbar) 0,0295 inches of mercury (in.hg)
bars (bar) 14,5038 pounds per square inch (psi)

Imperial/US to metric units

Multiply .. By .. To obtain
inches (in) 25,40 millimeters (mm)
feet (ft) 0,3048 meters (m)
nautical miles (nm) 1,8520 kilometers (km)
pounds (lb) 0,4536 kilograms (kg)
gallons, U.S. (U.S. gal) 3,7854 liters (L)
quarts (qt) 0,9464 liters (L)
inches of mercury (in.hg) 33,86 millibar (mbar)
pounds per square inch (psi) 0,0689 bars (bar)

1013,25 mbar = 29.92 in.hg

Temperature

Fahrenheit degrees / Celsius degrees

\[
F = \frac{9}{5} C + 32 \\
C = \frac{5}{9} (F - 32)
\]
INTENTIONALLY BLANK
Section 2 Limitations

GENERAL LIMITATIONS .. 2-1
COLOR CODE FOR INSTRUMENT MARKINGS .. 2-2
FLIGHT ENVELOPE LIMITATIONS ... 2-2
 Altitude limitation .. 2-2
 Outside air temperature limitation .. 2-2
 Airspeed limits ... 2-3
 Rotor speed limits .. 2-3
POWERPLANT LIMITATIONS ... 2-4
TRANSMISSION LIMITATIONS ... 2-7
WEIGHT AND BALANCE LIMITATIONS (IMPERIAL UNITS) .. 2-8
WEIGHT AND BALANCE LIMITATIONS (METRIC UNITS) .. 2-9
SENSORS FAILURES ... 2-10
PLACARDS .. 2-11
INTENTIONALLY BLANK
The information in section 2, Limitations, is approved by EASA.

General limitations

Flight rules:
- Only day VFR is approved.
- Refer to Night VFR supplement J40-901 for night VFR approbation.

Aerobatic flight is prohibited.
- Voluntary in-flight engine shut down is prohibited.
- Voluntary in-flight declutching is prohibited.

Flight conditions:
- Flight in known icing conditions is prohibited.
- Flight in falling snow is authorised provided that snow condition is compatible with non-icing condition and horizontal visibility is above 1500 m.
 - Note: If snow accretion on windshield is significant, land or transition to forward flight.

Minimum crew is one pilot on the right seat.

Left seat harness must be buckled when seat is empty. In this case, left controls removal is recommended.

Operation is approved with the left seat removed, only if the left controls are removed.

Operation is approved with either or both doors removed, or unlocked and partially open for ventilation.
- In these cases, no loose object is allowed in the cabin.
 - Speed limitations are the same than those with doors installed and closed.
Color code for instrument markings

<table>
<thead>
<tr>
<th>Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>Indicates operating limits. The pointer should not enter red zones or exceed red limits during normal operation.</td>
</tr>
<tr>
<td>Red cross</td>
<td>Indicates power-off V_{NE}</td>
</tr>
<tr>
<td>Yellow or amber</td>
<td>Precautionary or special operating procedure range</td>
</tr>
<tr>
<td>Green</td>
<td>Normal operating range</td>
</tr>
<tr>
<td>White or Blue</td>
<td>Other indications</td>
</tr>
</tbody>
</table>

On the EPM, related numerical values are marked with the same color code.

Flight envelope limitations

Altitude limitation

Maximum operating altitude (Zp) ... 13,000 ft

Outside air temperature limitation

Maximum temperature ... ISA + 30°C limited to + 45°C
Minimum operating temperature .. -20°C
Minimum storage temperature .. -30°C
Airspeed limits

- **V_{NE}** power-on: 130 kt IAS - 2 kt IAS per 1000 feet Zp
- **V_{NE}** power-off: 110 kt IAS - 2 kt IAS per 1000 feet Zp
- Caution range: 0 – 45 kt IAS

Rotor speed limits

- **Power-on**
 - Maximum: 540 RPM
 - Green arc: 515 to 540 RPM
 - Minimum: 515 RPM
- **Power-off**
 - Maximum: 610 RPM
 - Caution range: 540-610 RPM
 - Normal range: 515-540 RPM
 - Caution range: 450-515 RPM
 - Minimum: 450 RPM
 - Minimum transient: 410 RPM
- **Rotor brake operation**
 - Maximum: 150 RPM
- **High NR horn**: > 594 RPM
- **Low NR horn**: < 466 RPM
Powerplant limitations

Operating limitations

Engine speed
Maximum engine speed ... 2700 RPM
Normal range .. 2585-2700 RPM
Minimum engine speed, power-on 2585 RPM

Temperature
Maximum cylinder head temperature (CHT) 260°C (500°F)
Maximum recommended CHT for shut down 180°C (356°F)
Maximum oil temperature .. 118°C (245°F)
Minimum recommended oil temperature before applying full power 60°C (140°F)

Oil pressure
Maximum .. 7.9 bar (115 psi)
Starting and warm-up range ..
Maximum for flight .. 6.6 bar (95 psi)
Minimum for take-off (CLUTCH light OFF) 3.6 bar (52 psi)
Minimum during idle .. 1.6 bar (25 psi)

Fuel pressure
Maximum .. 0.55 bar (8 psi)
Minimum .. 0.02 bar (0.3 psi)
Fuel
Maximum tank capacity ... 170 L
(45 U.S. gal)
Unusable fuel quantity ... 1.5 L
(0.4 U.S. gal)

Warning: Do not rely on fuel quantity indication when LOW FUEL light is ON or EPM warning is active.

Approved grades
.. AVGAS 100LL
.. AVGAS UL91

Alternate grades
Automotive unleaded gasoline can be used temporarily if it complies with EN228 or ASTM D4814 and following conditions:
Minimum octane rating ... 98 (*)
Alcohols (ethanol, methanol, etc.) Zero content

(*) (RON ≥ 98 and MON ≥ 87) or AKI ≥ 93

Note: refer to page 4-15 for management of possible fuel gage error.

Flight envelope restriction, in absence of detailed analysis of gasoline characteristics:

Note: Above grades can be mixed. If the mix contains any automotive gasoline, altitude restriction applies.
If operator has access to his fuel supply characteristics, following restriction may be used instead of the above conservative chart:

\[
\text{RVP} \leq 60 \text{ kPa (9 psi)} \quad \text{No flight envelope restriction}
\]

\[
60 \text{ kPa (9 psi)} \leq \text{RVP} \leq 90 \text{ kPa (13 psi)} \quad \text{curve raised by 3000 ft } Z_p
\]

Note: Exceeding this flight restriction will result in engine roughness, then loss of power.

Engine Oil

After break-in, use multigrade oil**MIL-L-22851**

Ashless dispersant SAE 15W50 or 20W50

During break-in (50 hours), use straight mineral oil**MIL-L-6082B**

<table>
<thead>
<tr>
<th>OAT</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above 27°C (80°F)</td>
<td>SAE 60</td>
</tr>
<tr>
<td>Above 16°C (60°F)</td>
<td>SAE 50</td>
</tr>
<tr>
<td>-1°C to 32°C (30°F to 90°F)</td>
<td>SAE 40</td>
</tr>
<tr>
<td>-18°C to 21°C (0°F to 70°F)</td>
<td>SAE 30</td>
</tr>
<tr>
<td>Below -12°C (10°F)</td>
<td>SAE 20</td>
</tr>
</tbody>
</table>

Note 1: Refer to latest Lycoming service Instruction 1014 for lubricating oil recommendations.

Note 2: Add Lycoming additive LW16-702 or equivalent to oil when using unleaded fuel during break-in.

Oil quantity

<table>
<thead>
<tr>
<th>Oil sump capacity</th>
<th>5.7 L (6 U.S. Quarts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum oil quantity for take-off</td>
<td>3.8 L (4 U.S. Quarts)</td>
</tr>
</tbody>
</table>

Gearboxes oil

Use Hélicoptères Guimbal oil **HG30-0039** (85W140).
Indicated power on MLI

The Multiple Limits Indicator displays the engine power status, based on engine manifold absolute pressure, with two limits:

- **Power (PWR) limit**, which corresponds to the engine rated power of 108 kW (145 hp),
- **Throttle (FLO) limit**, which corresponds to full throttle power.

At sea level in standard conditions, FLO limit corresponds to an engine power of 134 kW (180 hp).

- Their relative positions vary with engine inlet air temperature and altitude,
- Both limits should not be exceeded at any time,
- The indicator (pointer and digits) displays power delivered by the engine in terms of margin to the first of these limits.

Note 1: The red radial PWR mark shows that the limit could be exceeded if the pilot requires too much power. He should control the flight not to exceed it.

Note 2: The red FLO arc warns the pilot that the limit cannot mechanically be exceeded in order to help him anticipate.

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Full throttle power</th>
<th>Maximum rated power</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum</th>
<th>Full throttle power</th>
<th>Maximum rated power</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transmission limitations

- Main Gearbox power limitation .. **100 % PWR** on MLI
- Main Gearbox temperature ... Caution light

Issue 03 EASA Approved **2-7**
Weight and balance limitations (Imperial units)

Maximum Gross Weight .. 1543 lb

Longitudinal Weight and Balance diagram

Point 1 ... 1036 lb 83.5 in
Point 2 ... 1102 lb 83.5 in
Point 3 ... 1543 lb 79.7 in
Point 4 ... 1543 lb 75.4 in
Point 5 ... 1213 lb 75.4 in

Lateral Balance diagram

Note: Rotor axis is................................. $X = 78.7$ in $Y = 0$ in
Weight and balance limitations (metric units)

Maximum Gross Weight... 700 kg

Longitudinal Weight and Balance diagram

Point 1... 470 kg 2120 mm
Point 2... 500 kg 2120 mm
Point 3... 700 kg 2025 mm
Point 4... 700 kg 1915 mm
Point 5... 550 kg 1915 mm

Note: Rotor axis is X = 2000 mm Y = 0 mm
Sensors failures

When the MASTER is switched on, the EPM carries out a self-test and displays a test page (refer to page 7-13).

Only one flight should be performed after one of following parameters are displayed “Failed”, with following restrictions:

<table>
<thead>
<tr>
<th>Failed parameter</th>
<th>Flight restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAT</td>
<td>Use Section 5 to compute available performance</td>
</tr>
<tr>
<td></td>
<td>Apply a margin on temperature</td>
</tr>
<tr>
<td>Pressure</td>
<td>Limit MLI to 95% in PWR mode or 100% in FLO mode</td>
</tr>
<tr>
<td>T. induction</td>
<td>Carb. heat test : control through NR drop</td>
</tr>
<tr>
<td>CHT</td>
<td>Avoid long hover.</td>
</tr>
<tr>
<td>Carb. T</td>
<td>Control carb. heat manually</td>
</tr>
<tr>
<td></td>
<td>Use carb. heat below 80% MLI</td>
</tr>
<tr>
<td>ManP</td>
<td>Use Section 5 to compute available performance</td>
</tr>
<tr>
<td>Throttle</td>
<td>Use Section 5 to compute available performance</td>
</tr>
<tr>
<td>Oil T</td>
<td>Avoid prolonged hover. Monitor CHT</td>
</tr>
<tr>
<td>Oil P</td>
<td>Monitor CLUTCH and OIL P. lights</td>
</tr>
<tr>
<td>Fuel Q</td>
<td>Perform an accurate fuel planning</td>
</tr>
<tr>
<td>MGB/TGB Chips</td>
<td>Hand-check corresponding plug at take-off</td>
</tr>
<tr>
<td>Battery charge</td>
<td>Minimize electrical loads</td>
</tr>
<tr>
<td>CO</td>
<td>Keep cabin heat closed</td>
</tr>
<tr>
<td>Carb. heat control</td>
<td>Control carb. heat manually</td>
</tr>
<tr>
<td></td>
<td>Use carb. heat below 80% MLI</td>
</tr>
</tbody>
</table>
Placards

- On cabin ceiling:

<table>
<thead>
<tr>
<th>VNE POWER ON</th>
<th>Zp (ft)</th>
<th>IAS (kt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>4000</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>8000</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>10 000</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>12 000</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>13 000</td>
<td>104</td>
</tr>
</tbody>
</table>

VNE POWER OFF
subtract 20 kt

- On cabin ceiling:

<table>
<thead>
<tr>
<th>COMPASS</th>
<th>DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEADING</th>
<th>FOR</th>
<th>STEER</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>315</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hélicoptères Guimbal
CABRI G2
SECTION 2
LIMITATIONS

- Above the fuel tank filler cap:

- Under cabin heater control:

- In clear view of all occupants:

 Note: if the aircraft is approved for night VFR, refer to Section 9 Supplements.

- On the right and left side of central console:
- Forward luggage compartment:

```
MAX. LOAD
comply with C.G. limit
5 kg
11 lb
```

- Forward luggage compartment / under pilot seat:

```
AUX. 13.7 V D.C.
5A protected
```

- Main luggage compartment:

```
MAX. LOAD
comply with C.G. limit
1 kg
2 lb
```

- When left seat luggage brackets are installed:

```
Keep luggage secured
Remove all dual controls
Install cap on cyclic root
Max weight:
80 kg
175 lb
Weight & balance limitations:
See flight manual
```
- Starting S/N 1045 (with MOD 12-010), next to rear bow fitting:

 Tie down only
Section 3 Emergency procedures

INTRODUCTION ... 3-1
POWER FAILURES ... 3-2
 General .. 3-2
 Power failure - hover below 8 feet AGL ... 3-3
 Power failure during take-off .. 3-3
 Other in-flight power failures .. 3-3
DITCHING .. 3-4
IN-FLIGHT ENGINE RESTART .. 3-5
ENGINE FIRE ... 3-6
ELECTRICAL FIRE ... 3-7
TAIL ROTOR FAILURE .. 3-8
YAW CONTROL FAILURE ... 3-8
ENGINE GOVERNOR FAILURE .. 3-9
EPM FAILURES ... 3-9
AUERAL WARNINGS ... 3-12
EPM PARAMETERS OUT OF LIMITATIONS ... 3-12
EPM ALARMS ... 3-14
CAUTION / WARNING LIGHTS ... 3-15
The information in section 3, emergency procedures, is approved by EASA.

Introduction

The following emergency procedures describe the actions the pilot must take, relative to the various possible failures that can occur. However, depending on the many variable external environments, such as the type of terrain flown over, the pilot may have to adapt to the situation according to his experience.

To help the pilot in his decision process, three recommendations are used:

- **LAND IMMEDIATELY**
- **LAND AS SOON AS PRACTICABLE**
 Emergency conditions are urgent and require landing at the nearest landing site at which a safe landing can be made.
- **CONTINUE FLIGHT**
 Continue flight as planned. Repair at the destination according to maintenance manual.

Note: Immediate action that the pilot shall take, or main parameters are written in bold characters.
Power failures

General

Engine failure can be detected by:

- Yaw acceleration, nose to the right,
- Engine noise level decreases,
- Tachometer needles desynchronization on the EPM (engine decreases)
- OIL P warning on the EPM and OIL P red light coming ON.
- Plasma beeper,
- Rotor speed decreasing and “low NR” horn.

Caution: A slow decay in engine power, caused by carburetor icing or air filter clogging, is compensated by the governor and can be overlooked by the pilot.

The MLI indication will not change while in PWR mode, but will rapidly shift to FLO mode, then increase to 100%.

Primary transmission failure can be detected by:

- High yaw rate, nose to the right,
- Engine noise level increases,
- Tachometer needles desynchronization on the EPM (engine increases). Eventual engine overspeed only if the governor is OFF
- Rotor speed decreasing and “low NR” horn.

In case of a primary transmission failure, apply following power failure actions. Roll off the twist grip as soon as possible.

Warning:

Safe landing may not be possible if the power failure occurs within the “unsafe” zone of the H/V diagram (refer to section 5).

Operation inside this zone should be avoided.
Power failure - hover below 8 feet AGL

The helicopter will normally exhibit little or no tendency to depart in pitch or roll, hence requiring little correction:

1. Use left pedal input to counter yawing to the right,
2. Cushion landing by raising collective, until high pitch stop if necessary,
3. Once landed, lower the collective.

Power failure during take-off

Take-off acceleration is the most critical situation for a power failure to occur, requiring moderate and rapid pilot reaction:

1. Use left pedal input to counter yawing to the right,
2. Use aft cyclic to level the helicopter,
3. Before having reached 30 kt IAS, do not lower the collective,
4. If IAS is above 30 kt IAS, slightly pitch up while slightly lowering the collective, if needed, to prevent climbing,
5. When approaching the ground, raise the collective to cushion contact,
6. Use pedals to minimize ground drift,
7. Once stopped, lower the collective.

Other in-flight power failures

All cases:

1. Lower the collective immediately and maintain full down,
2. Use pedals to control yaw,
3. Maintain IAS between 30 and 50 kt IAS (50 kt IAS recommended),
4. Select landing area and manoeuvre to land into the wind,
5. Adjust collective to centre NR in green arc,
6. When the landing is ensured, consider engine restarting if enough time is available. Refer to page 3-5.
7. At about 60 feet AGL, apply aft cyclic to raise the helicopter nose smoothly and continuously. Below 50 kt IAS, this manoeuvre will not stop sink rate.
8. As ground closes-on, apply forward cyclic to level the helicopter while raising the collective to stop sink rate.
9. Use pedals to minimize ground drift,
10. Once stopped, lower the collective.

Note: Average manoeuvre requires about 200 to 300 m (650 to 1000 feet) free of high obstacle.
Note: During an emergency autorotation, always control airspeed carefully. Increasing airspeed above 50 kt IAS makes the landing easier, but requires a longer landing area.

Confined landing area:
When landing spot is confined, maintain IAS to 30 kt IAS in descent. Landing spot can be estimated by looking between the pilot pedals.

Caution: Anticipate that sink rate will not stop until final collective raise.

Failure above 2000 feet AGL:
It may be practicable to increase gliding distance to reach a better landing area.

- Best glide ratio is obtained at airspeed approximately 80 kt IAS (no wind). Increase airspeed with high headwind,
- Recommended NR is mid-yellow arc (480 RPM),
- At about 300 feet AGL, reduce IAS between 30 and 50 kt IAS (50 kt IAS recommended), check NR in green arc and refer to the above procedure.

Airspeed and rotor speed adjustments will reduce the gliding distance. Expect a PRACTICAL glide ratio between 2:1 and 3:1 or 0.7 to 1 nautical mile at 2000 feet AGL.

Ditching

1. Apply same procedures as for landing,
2. Head equally between the wind and wave direction,
3. Open doors,
4. Reduce forward and vertical speed to minimum possible before contact with water,
5. Keep collective up after contact, to help rotor deceleration.
In-flight engine restart

Attempt engine restart only when the autorotation is stabilized on the trajectory to an appropriate landing area, and sufficient time is available. If successful, power recovery can take only a few seconds.

1. Stabilize autorotation,
2. Check boost pump ON, fuel valve OPEN,
3. Check mixture full forward (RICH),
4. Check both ignition switches ON, upward,
5. Apply about 50 % throttle (90° twist grip),
6. Press starter button.

Note 1: Governor may be kept engaged or not.

Note 2: Do not worry for engine very fast acceleration. There is no risk of overtorque at re-synchronization. Be prepared to yawing to the left if power recovers.

Note 3: In absence of perceivable sound, the STARTER light gives a visual clue that the starter is actually energized.
Engine fire

Engine fire can be detected when the EPM fire warning lights up:

On the ground:

1. Shut cabin heater OFF,
2. Shut fuel valve OFF,

When engine quits:

3. Switch all switches OFF,
4. Pull rotor brake,
5. Wait for complete rotor stop before evacuating the cabin.

In flight:

Once fire is confirmed:

LAND IMMEDIATELY

1. Shut cabin heater OFF,
2. Lower the collective to enter autorotation as per procedure page 3-3,
3. Shut fuel valve OFF,
4. Shut fuel pump OFF,
5. Above 8000 feet AGL, increase airspeed to 90 kt IAS to accelerate the descent,
6. Perform an autorotation landing according to pages 3-3 and 3-4
7. Pull rotor brake,
8. Wait for complete rotor stop before evacuating the cabin.
Electrical fire

Can be detected by a strong smell of burning and/or by smoke.

1. Switch alternator OFF,
2. Switch MASTER OFF,

Note: EPM and NR lights are no longer powered.

3. Move NR switch to “Backup” position,
4. Use NR lights (Backup position) to monitor rotor speed.

Note: Remaining electrical equipment are those on direct battery: BARC backup and ignition system. Refer to page 7-7 for electrical system description.

If fire source is determined, switch the other systems ON

If electric fire continues, **LAND IMMEDIATELY**.

If not, **LAND AS SOON AS PRACTICABLE**.

Notes:
- With MASTER and alternator both OFF, engine still operates with both ignitions, but without the governor.
- With MASTER OFF and NR switch on “Backup”, following lights are still operative:
 - High, Normal and Low NR,
 - LOW FUEL caution.
Tail rotor failure

It could consist either in a tail rotor transmission failure, or in a tail rotor loss. This failure can be detected by sudden yaw acceleration - nose to the left - and/or totally ineffective pedals.

Caution : Nose to the right : probable engine failure
Nose to the left : probable tail rotor failure

Hovering IGE :
1. **LAND IMMEDIATELY,**
2. Reduce throttle in order to reduce left yaw rate,
3. Cushion contact with the ground by applying collective pitch up to high stop if necessary.

Other flight cases :
1. Switch governor OFF,
2. Adjust power to maintain 70 to 80 kt IAS,
3. Reach an appropriate surface for an autorotation running landing,
4. Carry out a full autorotation landing. Reduce airspeed as late as you can. Land with as much airspeed as the surface permits.

Yaw control failure

Hovering IGE :
1. **LAND IMMEDIATELY,**
2. Lower the collective slowly enough to land smoothly, while rolling-off throttle to reduce yawing nose to the right.

Other flight cases :
1. **LAND AS SOON AS PRACTICABLE,**
2. Adjust IAS to 70 - 80 kt IAS,
3. Adjust power to minimize sideslip and keep nose to the right,
4. Reach an appropriate surface for a running landing. Carry out a cautious landing. **Reduce airspeed as late as you can.** Land with as much airspeed as the surface permits.

Note : Prefer wind from the right.
Engine governor failure

Engine governor failure can be detected by the following:

- Rotor/Engine speed is not regulated in green arc and throttle extreme position is not reached,
- Rotor/Engine speed changes in level flight,
- If there is a doubt, roll the twist grip slightly and check grip’s reaction.
- GOV light is blinking,

When it is detected:
1. Hold the twist grip firmly, and overtake the governor action,
2. Switch governor OFF,
3. Regulate Rotor/Engine speed in the middle of green arc with twist grip,
4. CONTINUE FLIGHT

Caution: Always overtake the governor and stabilize NR in green arc before any other action is taken.

EPM failures

Complete loss of EPM display:
1. LAND AS SOON AS PRACTICABLE
2. Switch NR switch to Back-up position, check green light,
3. Rotor/Engine speed is controlled by the governor and can be checked using high and low NR warning lights.
4. Control carburetor heat manually:
 - Select COLD position at high power,
 - Select HOT position at low power
5. In this case, if LOW FUEL lights: LAND IMMEDIATELY

Erratic engine / rotor speed de-synchronization:

Reduce power gradually.

If de-synchronization indication continues:
1. Refer to NR lights indicator for reliable rotor speed,
2. Switch the engine governor OFF,
3. Monitor the rotor speed in the lower green arc,
4. LAND AS SOON AS PRACTICABLE

If de-synchronization stops:
1. Consider the EPM is operative, and the transmission is questionable
2. Limit power to avoid any de-synchronization reading
3. LAND AS SOON AS PRACTICABLE
4. Conduct a cautious landing, with minimum power, and gradual power increase. Refer to procedure page 3-2.
MLI Failure:
Detected by the indication **XXX** on MLI

1. Above 5500 feet Zp, you will always be limited by full throttle,
 Below 5500 feet Zp, do not exceed 80 kt IAS in level flight to
 prevent overpower.

CONTINUE FLIGHT

2. Make a cautious landing in conditions requiring not more power
 than previous take-off.

MLI Degraded Modes:
In case of one of following parameters loss, the MLI shifts automatically to a
 degraded mode:
 - Engine speed,
 - Throttle position,
 - OAT,
 - Ambiant air pressure.

Degraded mode is signaled by the MLI indication displayed in yellow.

CONTINUE FLIGHT

EPM CPU Overtemperature Failure:
When overtemperature is detected, the EPM displays this warning, then
shuts down 30 seconds later.

Refer to Complete loss of EPM display procedure.

If conditions for overtemperature have disappeared, a restart can be
attempted: wait for a low workload moment in stabilized flight, switch ALT.
OFF, then switch Master OFF for a short moment, then ALT. ON again.
Loss of engine speed sensor:
Detected by the indication XXX on engine EPM indicator and loss of governor (frozen twist-grip).

1. Refer to NR indicator for engine speed indication,
2. Overtake the governor by firmly gripping the twist-grip,
3. Once NR is in green arc, switch governor OFF,
4. Regulate throttle manually to keep the NR in green arc

CONTINUE FLIGHT

Loss of main rotor speed sensor:

Detected by the indication XXX on rotor EPM indicator.

1. Keep powered flight, no de-synchronization (no fast descent, nor autorotation practice),
2. Refer to NM indicator for engine speed indication,

CONTINUE FLIGHT

Loss of automatic carburetor heat regulation:

Detected by Tcarb warning in flight (Tcarb in yellow zone). Refer to page 3-12.
Aural warnings

Loud horn warning:

A *continuous* tone warns the pilot when rotor speed approaches low speed limit.

An *intermittent* tone warns the pilot when rotor speed approaches high speed limit.

A *short* tone warns the pilot when the LOW FUEL light goes on.

Note: The continuous horn can be temporarily muted by setting the NR switch to MUTE. It reengages itself when the condition disappears.

Beeper warning:

A high-frequency *continuous beep* warns the pilot in three situations:

- when oil pressure is lost with Plasma ignition ON – in conjunction with OIL P red warning light,
- to warn that engine ignition is HOT at startup,
- to prevent from leaving the Plasma ignition ON when leaving the helicopter (MASTER OFF as well as ON).

EPM parameters out of limitations

Note: All EPM parameters are displayed in corresponding color (inverted), and blink during 10 seconds when exceeding limit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exceeds</th>
<th>Corrective actions</th>
</tr>
</thead>
</table>
| Carb T | Yellow arc | 1. Check how much bricks are lightened,
 | | 2. Move carb heater switch to HOT as necessary,
 | | 3. Check bricks appears and temp gets out of yellow and CONTINUE FLIGHT
 | | ➔ If stays, avoid prolonged flight at low power setting.
 | | ➔ In case of carb. icing (*), LAND AS SOON AS PRACTICABLE
 | | Carry-on a cautious landing.
<pre><code> | | (* Refer to page 3-2 for detection means |
</code></pre>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Exceeds</th>
<th>Corrective actions</th>
</tr>
</thead>
</table>
| **CHT** | Red arc | - If in hover, land or depart in translation
- If in translation, reduce power
→ If indication stays into red arc, **LAND AS SOON AS PRACTICABLE**
Once landed, keep nominal NR for cooling |
| **Oil T** | Red arc | - If in hover, land or depart in translation
- If in translation, reduce power
→ If indication stays into red arc, **LAND AS SOON AS PRACTICABLE**
Once landed, keep nominal NR for cooling. |
| **Yellow arc** | Wait to apply full power
Allow to warm-up. |
| **Oil P** | Red arc > 7.9 bar (115 PSI) | - Cold starting: allow engine to warm-up
- Flight: reduce power
If stays into red arc: **LAND AS SOON AS PRACTICABLE** |
| **Yellow arc** | 6.6< ≤ 7.9 bar (95< ≤ 115 psi) | - Normal at cold starting and during engine warm-up.
- Flight: reduce power.
If stays into yellow arc: **LAND AS SOON AS PRACTICABLE** |
| **Yellow arc** | 1.7 < ≤ 3.6 bar (25 < ≤ 52 psi) | - Normal at idle,
- Flight: CLUTCH light should light soon after. Refer to p 3-16 – CLUTCH. |
| **Red arc** | < 1.7 bar (25 PSI) | **LAND AS SOON AS PRACTICABLE**
Monitor OIL P warning light.
→ If ON **LAND IMMEDIATELY** |
| **Fuel P** | Red arc < 0.03 bar (0.5 PSI) | 1. Check boost pump ON
2. Reduce power and reach **Vy = 50 kt IAS**
LAND AS SOON AS PRACTICABLE |
| **Red arc** | > 0.55 bar (8 PSI) | 1. Switch boost pump OFF
2. Check a decrease
LAND AS SOON AS PRACTICABLE |
EPM Alarms

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Signification</th>
<th>Corrective actions</th>
</tr>
</thead>
</table>
| **CO** | Carbon monoxide cabin pollution | 1. Shut cabin heater OFF
3. Ground or hover : change heading
4. If symptoms of CO poisoning (headache, drowsiness, dizziness) accompany light, LAND IMMEDIATELY |
| **MGB / TGB Chips** | Gearbox degradation | If alarm is accompanied by any indication of a problem such as noise, vibration or MGB temperature light, LAND IMMEDIATELY
If there is no other indication of a problem, LAND AS SOON AS PRACTICABLE |
| **Fire** | Engine compartment fire | Refer to procedure page 3-6
LAND IMMEDIATELY |

CO (Amber)

Alarm: Carbon monoxide cabin pollution
Corrective actions:
1. Shut cabin heater OFF
2. Open vents
3. Ground or hover : change heading
4. If symptoms of CO poisoning (headache, drowsiness, dizziness) accompany light, LAND IMMEDIATELY

MGB / TGB Chips (Amber)

Alarm: Gearbox degradation
Corrective actions:
If alarm is accompanied by any indication of a problem such as noise, vibration or MGB temperature light, LAND IMMEDIATELY
If there is no other indication of a problem, LAND AS SOON AS PRACTICABLE

Fire (Red)

Alarm: Engine compartment fire
Corrective actions:
Refer to procedure page 3-6
LAND IMMEDIATELY
Caution / Warning lights

<table>
<thead>
<tr>
<th>Light</th>
<th>Signification</th>
<th>Corrective actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTER Amber</td>
<td>Starter is energized.</td>
<td>Release starter button as needed</td>
</tr>
<tr>
<td>STARTER (stays on) Amber</td>
<td>If stays when starter button is released : starter relay is stuck</td>
<td>Immediately pull the mixture OFF to shut the engine down and switch MASTER OFF. Have starting system serviced.</td>
</tr>
<tr>
<td>GOV OFF Blue</td>
<td>Governor is disengaged</td>
<td>Control Engine/Rotor RPM with twist grip. CONTINUE FLIGHT</td>
</tr>
</tbody>
</table>
| **GOV OFF (blinking)** Blue | Governor is inoperative | If rotors are desynchronized from engine : Apply collective to resynchronize
- If blinking stops **CONTINUE FLIGHT** and keep rotor synchronized with engine
- If blinking does not stop, see below : |
| **BRAKE** Amber | Rotor brake engaged | Disengage and lock |
| **OIL P** Red | Low oil pressure | **LAND IMMEDIATELY** |
| **MGB T° Amber** | High gearbox temperature | 1. Move to 50 - 80 kt IAS translation
2. If MGB T° stays on and if light is accompanied by any indication of a problem such as noise or vibration, **LAND AS SOON AS PRACTICABLE** |
| **LOW FUEL** Amber | About 12 liters (3.2 U.S. gal) remaining | **LAND IMMEDIATELY** |
| | | When using automotive gasoline without specific fuel gauge (see p 4-15), consider as a red warning : **LAND IMMEDIATELY** |
CABRI G2

EMERGENCY PROCEDURES

<table>
<thead>
<tr>
<th>Light</th>
<th>Signification</th>
<th>Corrective actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Amber Alternator, regulator or battery charging malfunction</td>
<td>Check charge indicator on EPM (BATT). If green or white: battery is being charged. CONTINUE FLIGHT. Have the alternator regulator serviced after flight. If yellow: battery is not being charged. Turn all non-essential equipment OFF. LAND AS SOON AS PRACTICABLE Caution: Prolonged flight without alternator can result in loss of electronic and electrical equipment.</td>
</tr>
<tr>
<td>CLUTCH</td>
<td>Amber Belt tensioning (clutching), detensioning (declutching)</td>
<td>Refer to normal procedure</td>
</tr>
<tr>
<td></td>
<td>clutch pressure too low or Belt worn out</td>
<td>Reduce power until light is off. If continuous: Reduce IAS to 50 kt IAS LAND AS SOON AS PRACTICABLE Be prepared to enter autorotation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NR (High) - Amber</th>
<th>Raise the collective or Reduce throttle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR (Low) - Amber</td>
<td>Lower the collective or Increase throttle</td>
</tr>
</tbody>
</table>

Note: Blinking light corresponds to **Yellow arc** on EPM

Continuous light warns when approaching... **Red limit** on EPM tachometer
Section 4 Normal procedures

GENERAL
AIRSPEEDS FOR SAFE OPERATION
DOORS
DOORS-LOCK AND ANTI-THEFT
BEFORE FLIGHT
DAILY OR PRE-FLIGHT CHECKS
INTER-FLIGHT CHECK
BEFORE STARTING ENGINE
STARTING THE ENGINE
BEFORE TAKE-OFF
TAKE-OFF PROCEDURE
CLIMB
CRUISE AND/OR LEVEL FLIGHT
FLIGHT TIME MANAGEMENT
FUEL QUANTITY MANAGEMENT WITH ALTERNATE FUEL
APPROACH AND LANDING
ENGINE / ROTOR SHUTDOWN
DISENGAGEMENT WITH ENGINE OFF
TRAINING
Power failure in hover in ground effect practice
Autorotation practice
Autorotation practice abortion
EPM failure
Engine governor failure practice

Issue 08 EASA Approved
The information in section 4, Normal procedures, is approved by EASA.

General

This section contains instructions and procedures for operating the helicopter, from the planning stage through all the mission.

Normal and standard conditions are assumed in these procedures. Pertinent data in other sections is referenced when applicable.

The instructions and procedures contained herein are written for the purpose of standardization and are not applicable to all situations. They cannot replace pilot's appreciation of each particular situation.

Airspeeds for safe operation

Take-off and climbs ... 50 kt IAS
Best range ... 80 kt IAS
Autorotation (also see page 3-2) ... 50 kt IAS
Never-exceed speed (V_{NE}), power on 130 kt IAS
- 2kt IAS per 1000 feet Zp

Never-exceed speed (V_{NE}), power off 110 kt IAS
- 2kt IAS per 1000 feet Zp

Doors

Operation with one or two door(s) removed is allowed with no additional limitation in the whole flight envelope.

Each door is equipped with a restraining strap which enables partial opening for venting purpose.
Operation is allowed with no additional limitation with one or two doors unlatched in this way, partially opened, secured by the restraining strap.

In all these cases, make sure that all harnesses are buckled and secure all loose objects. Warn passenger to keep head, arms and objects inside the cabin to avoid high velocity airstream.
Doors - lock and anti-theft

To unlock / lock the doors, press the corresponding button on the key-ring radio transmitter. Check the flashing strobe light confirmation.
If the transmitter is ineffective, check the “Auxiliaries” breaker inside the battery box.
Unlocking / locking the doors also enables / disables the engine starter, if active (refer to page 7-19).

Note: The starter is enabled when the rotor is turning above 400 RPM, whatever the antitheft state.

Before flight

The pilot should be familiar with helicopter limitations detailed in Section 2 of this manual.
The pilot should have checked weight and balance. Refer to Section 2 and Section 6 of this manual.
The pilot should check helicopter performance according to Section 5 of this manual.
The pilot should carry out a pre-flight check before each flight.
The use of automotive gasoline without specific fuel gauge leads to fuel gage error and time remaining to starvation display error. Refer to page 4-15 for fuel management with automotive gasoline.

Daily or Pre-flight checks

The following check must be carried out before each flight.
However, if the helicopter is operated by a single pilot, or in an organization where checks are done by a qualified mechanic, this check may be carried-out daily, before the first flight of the day.
In this case, an inter-flight check should be done between each flight (refer to page 4-7).

Preliminaries

- Remove airframe covers, Pitot and static plugs, blade tie downs and exhaust plug.
- In cold weather, remove all frost, ice or snow.
- Purpose of the following inspection is to:
 - Visually check the helicopter general condition,
 - Detect leakage indications,
 - Detect aluminum fretting marks : dark powder marks,
 - Detect steel fretting marks : black or brown marks/residues,
 - Detect overheating marks (color changing),
 - Detect damages (impacts, scratches, cracks, frictions, corrosion...).
Note: All castellated nut must be locked by cotter pin.
Lockwire must be tight.
Torque-seal marks must be intact.

Definition of Cabri G2 inspection stations

Station 1:
Main rotor blades (each 3):
- Clean, particularly at leading-edge
- Leading edge hand-check for damage or debonding
- Tips bolts ... Check lockwiring

- Right door hinges .. Check
- Door hinge safety pins (early models only) Installed
- Windshield condition and cleanliness Check
- Sideslip string indicator .. Check
- Lower windows condition and cleanliness Check
- Landing light .. Check
- Pitot tube ... Cover removed, check
- Static pressure port .. Plug removed, check
- Front gear bow attachment ... Check
- Left door hinges ... Check
- Door hinge safety pin (early models only) Installed
Station 2:
Fuel cap..........................Closed secured – and key locked if equipped
Navigation lights..Check
Front and main gear bow condition..............................Check
Landing gear pants and skid condition..............................Check
Skid shoes...Check
Left bear paw (if installed) ..Check, locked
Fuel manifold..No leak
Drain valve ..Sample
Cowling hinge...Check

Open the left engine cowling
Battery strap..Check
Battery terminals...Tightened
Battery breakers (see page 7-10).....................................All set
MAP lines...Check
Transmission belt...Check
Belt slack...Check
Electronic ignition coils attachment..................................Check
Ignition wires ...Check
Engine and baffling general condition..............................Check
Engine skirts condition and attachment..........................Check
Exhaust pipes...Check
Heat muff and hose condition..No cracks
Mixture control...Check
Throttle control..Check
Air box attachment..Check
Auto carburetor heat..Check cold
Engine connector...Locked
Engine mount condition..Inspect for cracks or corrosion
Engine rubber mounts..Check
Magneto connection..Check
Fuel pump and hose..No leak
Oil cooler air hose..Check
Flexible push-pull control...Check
Left tail boom attachments..No crack
..Cotter pins Installed
Cowling ..Close and lock front latch

Station 3:
Left tail boom side general condition.............................No damage
Horizontal stabilizer..Shake and inspect
Strobe light..Check
Rotor duct...Clean
Tail rotor blades condition..Clean, no impact
Tail rotor blades slack..Check all 7
Tail skid and attachment..Check
Station 4:
Tripod attachments... Check
Tail gearbox oil level................................. Check – Minimum is mid-sight gage
Chip detector .. Locked
Pitch lever and rod end................................. Check free-play
Horizontal stabilizer Check
Rear transmission tube................................. Check while turning main rotor
Right tail boom side general condition............ No damage
Transmission bearings bolts and plugs............ Check tight

Station 5:
Muffler exhaust.. Check and shake
Right cowling hinge... Check

Open the right engine cowling
Right tail boom attachments.......................... No crack
Cotter pins ... Installed
Muffler... No crack or interference with engine frame
Oil filter .. Locked, no leak
Engine oil dipstick Check 4 to 6 Qt and tighten
Engine mount condition Inspect for cracks or corrosion
Fuel line condition .. Check
Clutch distributor and attachment Tight, no leak
Oil cooler pipes... No leak
VHF antenna ... Check
Engine cooling intake screen Inspect and clean
Winter air flow restrictor check if installed
Ignition wires ... Check
Engine and baffling general condition Check
Rotor brake ... Check pads and clearance
Flex coupling and bolts Tight – no crack
Upper pulley ... Check
Clutch actuator .. Retracted
Main gearbox oil level Check – Minimum is mid-sight gage
Chip detector .. Locked
Inspection door .. Closed
Engine skirts condition and attachment Check
Exhaust pipes ... Check
Carburetor heating hose Check
Air intake duct and hose Check
Gascolator drain ... Sample
Fuel flow sender ... Check
Aft landing gear attachment Check
Cowling ... Close and lock both latches
Front and main gear bow condition Check
Landing gear pants and skid condition Check
Skid shoes..Check
Right bear paw (if installed).. Check, locked
Navigation lights..Check

Open the luggage door, step for main rotor examination:
Blade bolts ..Check
Elastomeric thrust bearings.................................Check elastomer condition
Main rotor hub..Check nicks or corrosion
Lead-lag dampers:
- Elastomer condition ...No crack
- Rod ends ..Free without looseness
Anti-vibrating pendulums (if installed) visual and free motion check
All control rod-ends .. Free without looseness
Droop stop ring..Visual check
Rotating and non-rotating scissors...... Free with moderate looseness
Swashplate...Check no free-play
Main gearbox upper fitting...Check
Air intake and MGB compartmentNo foreign object
Engine air intake screen..Inspect and clean
Blades leading edge...No debonding

Step down and slam luggage door

Inside the cockpit
Stroking seats:
- Upper slide ...Aligned
- Attachment ..Check
Harnesses..Check
Main controls condition ..Check
Pedals condition...Check
Objects inside...Stowed
Removable controls (if installed) ..Check
Cap on cyclic root (if luggage secured in left cabin)Check
Instruments and switches..Check
All breakers ...In
Inter-flight check

This paragraph describes the inter-flight check that should be carried out in the case described page 4-2.

Station 1:

Main rotor blades (each 3):
- Leading edge hand-check for damage or debonding
- Right door hinges .. Check
- Pitot tube ...Cover removed, check
- Static pressure port .. Plug removed, check
- Left door hinges ... Check

Station 2:

- Fuel cap.......................... Closed secured – and key locked if equipped
- Front and main gear bow condition Check
- Landing gear pants and skid condition Check
- Skid shoes .. Check
- Left bear paw (if installed) .. Check, locked
- Cowling.. Latched
Station 3:
- Left tail boom attachments: Check
- Horizontal stabilizer: Shake and inspect
- Rotor duct: Clean
- Tail rotor blades: No impact
- Tail skid and attachment: Check

Station 4:
- Tripod attachments: Check
- Tail gearbox oil level: Check – Minimum is mid-sight gage
- Chip detector: Locked
- Horizontal stabilizer: Check

Station 5:
- Right tail boom attachments: Check
- Muffler Exhaust: Check
- Cowling: Latched
- Front and main gear bow condition: Check
- Landing gear pants and skid condition: Check
- Skid shoes: Check
- Left bear paw (if installed): Check, locked

Open the luggage door, step for main rotor examination:
- Rotor hub: General check
- Air intake and MGB compartment: No foreign object
- Engine air intake screen: Inspect and clean
- Blades leading edge: No debonding

Step down and slam luggage door

Inside the cockpit:
- Main controls condition: Check
- Pedals: Check
- Objects inside: Stowed
- Removable controls (if installed): Check
- Cap on cyclic root (if luggage secured in left cabin): Check
Before starting engine

Harnesses .. Both fastened
Cockpit .. All objects correctly secured
Pedals ... Full travel free
Collective Friction released, full travel free, then move back down
Cyclic ... Full travel free
Breakers ... In
Hourmeter ... Checked
Fuel shut-off valve ... Checked ON
Altimeter ... Set
All switches .. OFF
Carburetor heating switch .. Auto
MASTER switch .. On
NR switch ... Backup
NR green light .. Checked ON
Lights and NR horn automatic check .. Monitored, all working except STARTER

EPM starts

Watch flight log
 Push #2 key to enter configuration page.
 Set configuration as desired ... refer to page 7-13
 Push #1 key to freeze flight log page, push again to carry on.

Watch self-test
 If a parameter is failed, the page stays until acknowledged.
 Refer to page 2-10 for no-go parameters.

Watch flight screen
 No alarm except: **OIL P - FUEL P - OIL T - CARB T** (if OAT corresponds)
 If engine is cold.............. Cross-check OAT - CHT - OIL T - CARB T
 Fuel quantity .. Check

Governor .. OFF, check GOV OFF light ON
Mixture .. Forward, full rich

Note 1: Before starting, NR green light, GOV OFF, OIL P, ALT. lights are on. CLUTCH light may also be ON.

Note 2: The EPM has preflight functions described page 7-11 and following pages.

Note 3: When the helicopter is soaked at very low temperature, (less than -17°C / 0°F) the EPM display may not start at once. Switch MASTER OFF and wait a few minutes in the cabin before switching it back ON.
Warning:

- The clutch may have stayed engaged, or engage unexpectedly, allowing the rotor to turn at starter engagement.

- The blades can be very dangerous particularly at low speed, and with gusts or wind. They are very heavy and flexible.

 ➤ Never engage the starter while the area is not completely clear of people and foreign objects in a **6 meter (20 foot) radius**. The blades may turn unexpectedly.

 ➤ The pilot must not leave the cockpit as long as the engine or the rotor turns. He must wait complete stop.

 ➤ Strictly forbid all people presence in the rotor area – 6 meter (20 foot) radius, while the engine is running or the rotor is turning, unless controlled by the pilot in command as follows:

 ➤ To allow a person enter or exit the cabin or rotor area – 6 meter (20 foot) radius, the pilot must:

 1. Make sure the wind is less than 20 kt,
 2. Hold the collective down,
 3. Hold the cyclic slightly aft,
 4. Maintain the RPM steady in the yellow – green arc,
 5. Watch the person in lateral sector and allow by a head sign. **Do not move the cyclic while the person has started moving towards the helicopter.**

It is the pilot’s responsibility to make sure that take-off and landing area is clear from all people that could be endangered, and that all people approaching the helicopter are well aware of above warnings, and briefed to:

1. Stay clear 6 meters (20 feet) of the helicopter,
2. Watch the pilot and wait his sign before moving into the rotor area,
3. Bend forward and keep hands, cloths and objects low,
4. Move in the lateral area, in pilot’s sight.
Starting the engine

Headset, Radio ... ON if needed
Altimeter setting .. Correlated with ATC information
Compass heading indication ..Verified
Strobe ... ON
Fuel pump ... ON, check Fuel pressure increase
Manual fuel injections .. As needed
Throttle Monitor on MLI : START as required between 0% and 15 %
Rotor brake Apply - check the light - lock forward
Mixture .. Full rich forward
Ignitions, Magneto and Plasma ... ON, check beeper
Area ... Clear

Radio clearance if needed
Starter ... Activate
STARTER light........ checked ON and back OFF when switch is released
After engine starts, reduce throttle to set engine speed to :
.. Warm engine : idle
.. Cold engine : 1000 RPM

Check oil pressure light......................... OFF within 30 seconds of starting
If not, shutdown the engine by mixture off

Collective ... Down, friction on
Alternator ... ON, check ALT goes off
CLUTCH .. Engage and lock switch – check light is ON
Throttle ... Adjust if necessary to avoid engine stall
Rotor and Engine indicators ... Synchronized
CLUTCH light .. Wait for OFF

Note 1: Manual fuel injections: raise the collective lever to approx. one third of its stroke so that mechanical correlation allows large throttle strokes. Then, roll the twist grip back and forth 2-3 times. This actuates the carburetor mechanical acceleration pump and injects fuel in the inlet manifold.

Note 2: Cold weather starting:
After a failed starting attempt, oil pressure red light may stay off a while because of viscous cold oil. Pilot should crank again within 80 seconds of previous cranking. Otherwise, cranking will be inhibited until oil pressure decreases in the red zone.
When starting an engine soaked at very cold temperature (-20 to -10°C/-4 to 14°F), apply not less than 5 fuel injections and avoid high throttle settings. Refer to SL10-001 for detailed recommendations.

Note 3: Depending on belt condition and temperature, the rotor may slightly engage from engine start. In this case, engage clutch to avoid prolonged belt slippage.

Note 4: As the rotor begins to spin, a cyclic stick rotation may occur. Center the stick smoothly.

Note 5: ALT light may flicker at idle. Check ALT lights goes off above 1500 RPM.
Ignition test:
Set engine speed to 2000 RPM (upper purple radial mark)
Plasma OFF 5 sec. – maximum drop 300 RPM (lower radial mark)
Magneto OFF 5 sec. – maximum drop 100 RPM

Set rotor speed .. NR < 450 RPM
Wait for Oil temperature increase as needed.

Set rotor speed to .. 530 RPM
Check BARC backup green light lights ON
CARB. HEAT .. HOT
Wait for an additional Carb brick to pop
Check that NR drops
CARB. HEAT .. COLD
Wait for the additional Carb brick to disappear
Check that NR increases
CARB. HEAT .. AUTO

Roll-off throttle to idle Check needles desynchronization
Check lower BARC light blinks when NR in yellow arc
Check warning horn when NR approaches lower red limit
Switch BARC to mute warning horn. This will also switch to normal mode
Check idle stabilization
Governor ON, Roll-in throttle ..
check governor engages from NR = 400 RPM
Check rotor speed in green arc

Before take-off

Oil temperature .. 30°C (86°F) minimum recommended
60°C (140°F) minimum for max power
Doors .. Closed or secured with strap
Harnesses .. Both fastened
Pressures and temperatures Green arcs
Warning and caution lights OFF
Performance calculation ... first limit checked on MLI
Landing light and NAV. light As needed
Radio .. As needed
Collective friction .. Released
Take-off procedure

On clear flat area
1. Apply collective pitch progressively to stabilize hover at **2 feet skid height**.
2. Adjust cyclic trim.
3. Check engine parameters in green arcs and warning / caution lights OFF.
4. Apply slight forward cyclic to accelerate at a constant height.
5. At 45 kt IAS, rotate to reach and maintain 50 kt IAS.
6. Once climb is stabilized, adjust power as needed. Rate of climb should not exceed 500 ft/min below 100 feet in order to ease piloting in case of an engine failure.
7. Follow take-off profile shown on Height-Velocity diagram shown page 5-3:

![Height-Velocity diagram](image)

Note 1: Take-off is possible without increasing power in case of a very slow acceleration on hard surface.

Note 2: Take-off run may be shortened, by raising slightly the collective to compensate for height loss, if power margin enables it.

On other surface (confined area or surrounded by obstacles)
Refer to HOGE performance page 5-4.
Adapt acceleration procedure to environment by keeping rotor disk above horizon and avoiding as far as possible Height / Velocity limiting area (refer to page5-3).
Climb

Prescribed climb speed is 50 kt IAS.
Adjust power to obtain desired rate-of-climb. Maximum allowed power is indicated by 100% on MLI.
If full throttle is reached (100 % FLOW on the MLI), the rotor speed may decrease. In this case, slightly lower the collective to recover rotor speed.

Cruise and/or Level flight

All parameters ... Green arcs
Warning and caution lights ... OFF
Fuel remaining.. Check
Economy cruise is obtained with .. 90% on MLI
Fast cruise is obtained with ... 100% on MLI
Maximum endurance speed is ... 50 kt IAS
Best range speed is ... 80 kt IAS

Flight time management

The EPM has two features to ease flight management :
- A fuel flow computer, giving different data described page 7-15,
- A flight time counter, displaying the real flight time to be logged, described page 7-14.

The flight time display is frozen at rotor shutdown, until next start-up, and is stored in the EPM flight log page.
The average fuel flow during ongoing flight is stored in the EPM flight log page.

One flight is counted from rotor start-up, to rotor shutdown.

Caution: The fuel gage and fuel flow indication have a lower accuracy than their display.
Always perform a cautious fuel planning, and take adequate reserve for the kind of operation.
Always trust the LOW FUEL warning light as per page 3-15.
Fuel quantity management with alternate fuel

The use of automotive gasoline without specific fuel gauge (MOD 12-051 or corresponding Service Bulletin) leads to fuel gage error and time remaining to starvation display error. In this case:
- for flight preparation, take into account actual fuel quantity rather than gage indication,
- When loading more than 150 liters of automotive gasoline, switch Master ON and check that gage is displaying quantity up to 179 liters (47 ¼ U.S.gal). Above this value, the EPM considers it an error and displays XXX. In this case, this indication is not a no-go.
- in flight, correct reading using the chart below. Mixing with AVGAS leads to intermediate error readings
- As per emergency procedure section, LOW FUEL light, which is independent of fuel gage, should be considered as a warning and lead to immediate landing.

Note: Above 150 liters in the tank, measured value may exceed 180 liters, therefore leading to XXX fuel gage indication for a maximum of 30 minutes of flight. This will lead to a warning on the test page at the beginning of the following flight.
Approach and landing

Approach with .. 50 kt IAS and -500 ft/min

Land on clear area
The target is ... 50 kt IAS / 50 ft AGL / -500 ft/min

Flare gently with cyclic to reduce rate of descent and forward speed.
Gently raise the collective to stop in ground effect, hovering at 2 feet skid height.

Engine / Rotor shutdown

Collective... Down, friction on
Governor...OFF
Engine cooling.............................. 420 < Nr < 450 RPM until CHT ≤ 180°C
Idle.. Stable
CLUTCH.. Switch to disengage
Wait 10 seconds – check light is ON
Mixture... Pull OFF to shut-down
Ignition switches ..OFF
Landing light and NAV. light ..OFF
Alternator...OFF
Fuel pump...OFF
Rotor brake.. On request under 150 RPM (white mark)
Rotor.. Stopped
Strobe..OFF
Radio.. Cleared and OFF
Hourmeter and EPM flight time.. Noted
MASTER...OFF

Note: The CLUTCH switch is active only if the MASTER switch is left ON during a few seconds.

Disengagement with engine OFF

If the engine was shut-down or has stalled while it was clutched, switch CLUTCH to disengage.
The MASTER switch can then be switched OFF after a few seconds.

Engine disengaged, the complete declutching can take a few minutes.
Training

Caution: The Cabri G2 has a very capable rotor, giving her comparatively permissive autorotation characteristics. This allows efficient training and practice, from different situations and using different piloting techniques.

Following procedures are given as guidelines and should be followed for best safety.

However, pilot and instructor should keep in mind that power failure training is a very demanding practice, requiring a high level of awareness, good health and personal condition, and aircraft in perfect airworthy state.

Power failure practice must be limited to the strict needs of instruction and maintaining good proficiency. Never practice autorotation as a show.

Pilot must stay familiar with Height-velocity diagram page 5-3 together with procedures described in Section 3 to follow them in case of an actual failure.

Autorotation must only be practiced over an area that would minimize hazards associated with an actual engine failure.

Smooth and hard surface should be preferred to practice running landings.

In order to familiarize with Cabri G2 landing attitude, practice powered running landings before autorotation training.

Caution: Before attempting running landings, check thoroughly carbide wear shoes. An unexpected drift during a running landing is a clue to a carbide shoe failure. Always check in case of doubt.

Rapid throttle chops should not be used to practice autorotation.

During autorotation training, try to keep the helicopter skids level at touchdown, to avoid unpleasant pitch-down and bouncing.

If the ground is not smooth and if the rotor speed is too low when the helicopter touches the ground, a pitch oscillation can happen, leading to an uncomfortable landing. In that case, the pilot has to keep the cyclic control in the neutral position in order to prevent induced oscillations.
Power failure in hover in ground effect practice

1. Roll-off throttle frankly until on its stop,
2. Counteract yaw motion by applying left pedal,
3. Increase collective as ground approaches, to smooth landing,
4. Push collective down once landed.

Note 1: If the helicopter is light, it may bounce after a first touchdown.

Note 2: The Cabri G2 has no natural tendency to depart in roll or pitch after failure. No systematic corrective cyclic action is needed. A slight forward motion at impact is recommended for better control.

Note 3: For a forgiving practice, respect a maximum of 5 feet height.

Note 4: Avoid practice at maximum gross weight.

Autorotation practice

1. Lower collective full down,
2. Counteract yaw motion by applying left pedal,
3. Roll-off throttle through its spring ramp to its stop,
4. Maintain IAS between 30 and 50 kt IAS (50 kt IAS recommended) by controlling longitudinal cyclic,
5. Slightly increase collective if required to keep rotor speed in the green arc,
6. At about 60 feet AGL, apply aft cyclic to raise the helicopter nose smoothly and continuously.
7. As ground closes-on, apply forward cyclic to level the helicopter while raising the collective to stop sink rate.
 - With a 50 kt IAS approach, landing requires a longer distance but is easier to manage. Little action is required on the collective control since the flare will stop the sink rate.
 - A 30 kt IAS approach needs smaller cleared area for landing but is more difficult to manage.
8. Use pedals to minimize ground drift,
9. Once stopped, lower the collective.

Note: When autorotation is stabilized with collective full down, the rotor speed should stay in the authorized range, whatever the weight and the altitude in flight envelope.

Caution: If airspeed drops below 30 kt IAS, push frankly the cyclic forward to recover airspeed.
Aborting autorotation practice

If power recovery is decided during autorotation:

1. Roll-in throttle until governor engages,
2. Gradually raise collective pitch to stop autorotation and descent,
3. Control yaw during power recovery with pedals.

Note: Do not worry for very fast engine acceleration. There is no risk of overtorque at re-synchronization. Be prepared to yawing to the left when power recovers.

EPM failure

A flight instructor should make the student familiar with the NR lights:

1. Select an appropriate flight phase with little workload,
2. Mask the EPM screen with a paper or the night vision filter,
3. Switch NR to “Backup”,
4. Control the flight in order not to exceed the power limit: moderate the cruise speed and practice cautious landing within this flight take-off conditions.
Engine governor failure practice

To simulate an engine governor failure in flight, proceed as follows:
1. Switch-off governor,
2. Adjust twist grip in order to maintain engine/rotor speed in the middle of green arc,
3. Carry out a standard landing.

Note: The mechanical correlation is designed to minimize pilot workload in case of manual regulation.
Section 5 Performance

Airspeed Calibration ... 5-1
Rotor Starting and Stopping Limit ... 5-2
Height-Velocity Diagram ... 5-3
Hover Out of Ground Effect ... 5-4
Hover In Ground Effect ... 5-5
Rate of Climb at VY = 50 KT IAS ... 5-6
Take Off Distance .. 5-10
Glide Distance in Autorotation ... 5-10
Sound Exposure Level .. 5-10
The information in section 5, Performance, is approved by EASA.

Airspeed calibration

![Airspeed Calibration Graph](image)

Notes:
- Calibrated airspeed is equal to true airspeed at sea level in standard conditions.
- Indicated airspeed assumes zero instrument error. Difference with calibrated airspeed is caused by pressure ports installation.
Rotor starting and stopping limit

Maximum demonstrated wind for rotor start-up or shut-down: 40 kt, including gusts.

Caution: When starting or stopping the rotor in strong wind, lower fully the collective to its stop, and keep the cyclic in neutral position.

Apply rotor brake frankly from the specified speed.

DO NOT release until full stop.
Height-Velocity diagram

- **Note**: With a view to simplicity, the same domain was demonstrated regardless of altitude and temperature. It means that some margin exist at lower altitudes, temperatures and weights.

During take-off, the pilot should pay attention to avoid this zone. In addition, he should limit the rate of climb to a maximum of 500 feet / min below 100 feet AGL, in order to limit the loss of rotor speed in case of power failure (see procedure page 3-3).
Hover Out of Ground Effect

OGE hover performance

- $20^\circ C \leq \text{OAT} \leq \text{ISA}+30^\circ C$
- No wind
- Engine speed = 2650 RPM
- Max. Continuous Power

$Z_{\sigma \text{ max}} = 14200 \text{ ft}$

Gross weight

<table>
<thead>
<tr>
<th>Gross weight (kg)</th>
<th>470</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>470 lb</td>
<td>1100</td>
<td>1200</td>
<td>1300</td>
<td>1400</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>
A wind speed of 35 kt at all headings was demonstrated at sea level.
A wind speed of 25 kt at all headings was demonstrated at maximum reduced weight
\((M/\sigma_{\text{max}} = 835 \text{ kg}, \text{refer to following pages for reduced weight computation})\).
Rate of climb at $V_y = 50$ kt IAS

To determine the maximum rate of climb, first determine the reduced weight as follows:
1. Locate A on the left curves from outside temperature and pressure altitude,
2. Report A on the right curves and read the reduced weight from weight.

Note: The example is given for $M = 700$ kg, OAT = 20°C and $Z_p = 4000$ ft.
Reduced weight computation
Determine maximum rate of climb as follows:

1. Locate A on the left curves from pressure altitude and outside air temperature,
2. Report A on the right curves and find climb rate from reduced weight.

- $20^\circ C \leq OAT \leq ISA+30^\circ C$
- Engine speed = 2650 RPM
- Max. Continuous power
Rate of climb computation

Rate of climb: 0 ft/min
1 000 ft/min
2 000 ft/min
3 000 ft/min

Reduced weight
Take off distance

Take-off distance, following recommended take-off profile described page 5-3 with 50 feet obstacle, at corresponding HIGE maximum gross weight is 330 m (1080 feet).

Glide distance in autorotation

In stabilized autorotation with collective fully down, rotor speed stays within power-off rotor speed range. The following performance is then:

Minimum rate of descent1770 feet / min at IAS = 49 kt IAS
- 0.8 kt IAS per 1000 feet Zp

Best angle of glide 0.60 nm per 1000 feet at IAS = 78 kt IAS
- 1.3 kt IAS per 1000 feet Zp

Sound exposure level

Cabri G2 flyover sound exposure level is:

75.7 dB SEL

Confidence interval ± 0.3 dB. This measurement was established taking into account Vh = 100 kt IAS.
The sound exposure level was determined under ICAO regulation, Annex 16, volume 1, 2nd part, chapter 11.
Section 6 Weight and balance

GENERAL .. 6-1
CENTER OF GRAVITY, STANDARD DEFINITIONS ... 6-3
WEIGHT AND CG POSITION DETERMINATION ... 6-4
INTENTIONALLY BLANK
General

The helicopter must only be flown within the weight and balance envelope specified in Section 2. Operation outside these loading limits can result in degraded safety.

Note: Due to fuel position, the CG location will vary during the flight, especially laterally. During flight preparation, the pilot should ensure that the helicopter CG location stays within specified limits until consumption of all fuel.
INTENTIONALLY BLANK
Center of gravity, Standard definitions

The Cabri G2 frame axis are defined as follows:

- Z-axis is parallel to the main rotor shaft, positive upward,
- X-axis is normal to Z-axis in the plane defined by Z-axis and tail rotor transmission axis, positive rearward,
- Y-axis is deduced from the two others, so that the XYZ frame is direct. Positive Y are on the helicopter right side.

Datum is defined such that main gearbox center coordinates are:

\[
\begin{align*}
X & = +2000 \text{ mm} \\
Y & = 0 \text{ mm} \\
Z & = +2000 \text{ mm}
\end{align*}
\]

Notes:
- The helicopter is not leveled when on a horizontal ground.
- The tail rotor transmission is angled 2° downward when the helicopter is leveled.
Weight and CG position determination

Before each flight, the pilot should determine helicopter gross weight and CG position in order to check that helicopter CG limits shown page 2-7 are not exceeded, and to determine performance (Refer to Section 5).

This can be done with the following table:
1. Determine all the weights in the first column,
2. Compute longitudinal and lateral moments,
3. Sum each three columns,
4. Calculate total arms by dividing moments by total weight.

In metric units:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Arm X (mm)</th>
<th>Arm Y (mm)</th>
<th>Mom X (kg)</th>
<th>Mom Y (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipped aircraft</td>
<td>EW (1)</td>
<td>AX (1)</td>
<td>AY (1)</td>
<td>MX (1)</td>
<td>MY (1)</td>
</tr>
<tr>
<td>Right seat</td>
<td></td>
<td>1300</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left seat</td>
<td>(5)</td>
<td>1300</td>
<td>-280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>(4)</td>
<td>1250</td>
<td>+/- 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main luggage compartment</td>
<td></td>
<td>1854</td>
<td>323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front luggage compartment</td>
<td></td>
<td>325</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel (2)</td>
<td>(2)</td>
<td>(3)</td>
<td>(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplements (6)</td>
<td>(6)</td>
<td>(6)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Sum = GW</td>
<td>MX / GW</td>
<td>MY / GW</td>
<td>Sum = MX</td>
<td>Sum = MY</td>
</tr>
</tbody>
</table>

(1) Report aircraft equipped weight data
(2) Use 0.72 kg/L for AVGAS density, and 0.75 kg/L for automotive gasoline density.
(3) For fuel position, use:
Fuel Quantity X Y
0 to 50 L.............................1833 mm -313 mm
50 to 150 L...........................1886 mm -338 mm
150 to 170 L...........................1903 mm -342 mm
(4) Use -2.8 kg (negative weight) when a door is removed
(5) Use -3.8 kg when left seat is removed
(6) Refer to Section 9 for removable supplements.
For bear paws, Use 1.5 kg and no impact on CG position.
In Imperial units:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (lb)</th>
<th>Arm X (in)</th>
<th>Arm Y (in)</th>
<th>Mom X</th>
<th>Mom Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipped aircraft</td>
<td>EW (¹)</td>
<td>AX (¹)</td>
<td>AY (¹)</td>
<td>MX (¹)</td>
<td>MY (¹)</td>
</tr>
<tr>
<td>Right seat</td>
<td></td>
<td>51.2</td>
<td>12.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left seat</td>
<td>(⁵)</td>
<td>51.2</td>
<td>- 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>(⁴)</td>
<td>49.2</td>
<td>+/- 23.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main luggage compartment</td>
<td></td>
<td>73</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front luggage compartment</td>
<td></td>
<td>12.8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel (²)</td>
<td>(²)</td>
<td>(³)</td>
<td>(³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplements (⁶)</td>
<td>(⁶)</td>
<td>(⁶)</td>
<td>(⁶)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Sum = GW</td>
<td>MX / GW</td>
<td>MY / GW</td>
<td>Sum = MX</td>
<td>Sum = MY</td>
</tr>
</tbody>
</table>

(¹) Report aircraft equipped weight data
(²) Use 6.0 lb/gal for AVGAS density, and 6.3 lb/gal for automotive gasoline density.
(³) For fuel position, use:

Fuel Quantity............................XY
0 to 13 U.S. gal.......................72.2 in -12.3 in
13 to 40 U.S. gal.......................74.2 in -13.3 in
40 to 45 U.S. gal.......................74.9 in -13.5 in

(⁴) Use - 6.2 lb (negative weight) when a door is removed
(⁵) Use - 8.4 lb when left seat is removed
(⁶) Refer to Section 9 for removable supplements
For bear paws, Use 1.5 kg and no impact on CG position.
INTENTIONALLY BLANK
Section 7 Systems description

AIRFRAME ... 7-1
General ... 7-1
Landing gear .. 7-1
Seating ... 7-1
DYNAMIC SYSTEMS .. 7-2
Main rotor ... 7-2
Tail rotor .. 7-2
Transmission ... 7-3
Flight controls ... 7-4
Rotor brake .. 7-4
ENGINE INSTALLATION .. 7-5
Engine ... 7-5
Clutch ... 7-5
Air induction ... 7-5
Ignition system ... 7-5
Cooling system ... 7-6
Fuel system ... 7-6
ELECTRICAL CIRCUIT ... 7-7
Switches .. 7-7
Breaker panel ... 7-9
Battery breakers ... 7-10
Instrument panel and console ... 7-10
Emergency locating transmitter ... 7-10
ELECTRONIC PILOT MONITOR - EPM ... 7-11
Flight screen .. 7-11
Starting sequence .. 7-12
Flight log page .. 7-12
Configuration and settings page : ... 7-13
Sensors and alarms test page : ... 7-13
Start indicator ... 7-14
Clock - Stopwatch - Flight time counter ... 7-14
Fuel flow modes ... 7-15
Carburetor heat ... 7-16
BARC .. 7-17
OTHER EQUIPMENTS .. 7-18
Pitot - Static system .. 7-18
Engine governor ... 7-18
Doors lock / Anti-theft ... 7-19
Lights .. 7-19
CABIN AND AMENITIES .. 7-20
Luggage compartments .. 7-20
Ventilation and heating ... 7-20

Issue 03 Approved under DOA EASA.21J.211 7-i
Airframe

General

The Cabri G2 airframe is composed of three sections:

- The main fuselage, including cabin, central structure, luggage and fuel compartments. It is all made of composite sandwich.
- The engine section, isolated between a front and an aft firewalls. It is made of the steel truss engine mount, and composite cowlings.
- The aft structure, a composite shell combining the tail boom, the fins, and the tail rotor shroud, with the horizontal stabilizer.

Two composite cabin doors enable passenger / pilot access.
One composite door enables external access to the luggage compartment.

Landing gear

The main landing gear is composed of two tubular bows, and two skids.
It is attached to the fuselage by soft elastomeric mounts, giving adequate frequency tuning against ground resonance. There is no damper.

The landing skids are protected against abrasion by a set of carbide wear shoes.

Seating

The cabin features two high-energy absorbing, stroking-seats, improving occupants protection in case of a crash.

Note: The left seat pan can be removed to carry large cabin luggage. Specific optional brackets are available to secure them. A cap is provided to cover cyclic root, as copilot controls are removed.
Dynamic systems

Main rotor

The Cabri G2 main rotor is a three-bladed, fully articulated, soft-in plane rotor.

The rotor hub is forged from aluminum alloy, and attached to the stainless-steel mast, by a large splines and cones attachment, with a thrust nut. The hub is belted with a tough fiberglass winding, which increases its tolerance to damage.

The blades are made of carbon and fiberglass-reinforced composite, with a large internal steel tip weight, and lead balance weight, to increase rotor inertia.

Their fork attachment is directly connected to an elastomeric, spherical thrust bearing which ensures pitch, flap, and lead-lag motions.

They have a two-section, thick stainless steel leading edge cap which protects them against erosion due to sand, dust and precipitations.

Each blade is linked to the rotor hub via an elastomeric lead-lag damper, made of a single cylindrical layer of special rubber.

The blades are restrained in flapping-down, by a reciprocal droop-stop ring, guided in the rotor hub. They are restrained in flapping-up by an upper positive stop.

Tail rotor

The tail rotor is shrouded in the vertical fin.

It has seven reinforced-plastic-injected blades. Pitch change is permitted by their stainless steel laminated tension-torsion pack.

The tail rotor hub is directly mounted on, and driven by the tail gearbox, and its pitch control mechanism is part of the gearbox.

The tail gearbox is rigidly supported inside the shroud, by a three-tube mount. The front tube houses the tail rotor driving shaft.
The primary transmission is composed of a pulley directly bolted to the engine output flange, a poly-V belt transmitting the power, and an upper pulley connected through a freewheeling unit to the gearbox input.

The power is transmitted:
- forward to the main gearbox, and
- aft to the tail rotor transmission.

The main gearbox contains a splash-lubricated spiral bevel-gear set which transmits power to the rotor mast. It is equipped with a filler plug/breather, a sight gage and a self-closing magnetic chip detector.

The main gearbox upper and lower casings act as a tough central structure, rigidly bolted in the middle of the fuselage structure.
The steel tail rotor driveshaft runs inside the tail cone, on three ball bearings.
A disc rotor brake is installed on the fore portion of tail driveshaft. The brake jaws are actuated through a cable control, from an overhead control quadrant.

The tail gearbox contains a splash-lubricated spiral bevel-gear set which transmits power to the tail rotor.
It also incorporates the tail rotor pitch control mechanism.
It is equipped with a filler plug / breather, a sight gage and a self-closing magnetic chip detector.

Flight controls

The Cabri G2 has dual flight controls which includes cyclic stick, collective stick and pedals.
Left controls are totally removable, without tools, if needed. They can be stowed in the cabin luggage compartment.

Cyclic and collective controls actuate main rotor blade pitch through push-pull rods, bellcranks and the swashplate.

Yaw control is transmitted from the pedals to the tail rotor by a long flexible push-pull control.

The collective stick grip is divided into one fixed part and one twist grip to enable sensitive throttle control, and to allow governor motion.

The collective stick is equipped with a friction mechanism, which is controlled by the pilot, without releasing his hands from the controls.

The cyclic sticks have no friction mechanism, but a dual-axis electric trim, allowing to completely release the static forces in flight.
This trim system is controlled either by the pilot or the copilot, through a circuit which gives priority to the one who activates it first.

Rotor brake

A rotor brake allows the pilot to stop quickly the rotor after flight. This rotor brake is mounted on the tail rotor driveshaft. It is actuated by a cable connected to a pull handle located above the pilot (yellow handle).
It is equipped with a switch used to trigger BRAKE light and prevent clutching when the brake is applied or seized.
Engine installation

Engine

The engine is a four-cylinder, direct-drive, carbureted gasoline engine. It is installed in the central compartment, suspended through elastomeric vibration mounts. It moves slightly to control the main transmission belt tension for clutch engagement / disengagement.

Clutch

The clutch tension actuator is fed by engine oil pressure through a four-way distributor, controlled by the CLUTCH switch. This system is frozen in case the electrical power is shutdown. A non-return valve maintains the pressure in case of engine stoppage, or oil pressure loss.

A gas spring maintains the engine disengaged during prolonged stop. The CLUTCH light lights OFF when the pressure of the oil feeding the distributor is above 3.6 bar. In the clutched position, it means that the belt is tensioned. In the declutched position, it means that the clutch cylinder is on its declutched stop.

Air induction

The engine air intake is located inside the main gearbox compartment, on the right side. It is fed in fresh air, by the front inlet above the cabin. A wire screen prevents foreign object ingestion. The air is ducted down the firewall, to an air filter box, behind the carburetor. This air box includes an electrically-actuated butterfly valve, which controls the carburetor heating, and the air filter.

Both cold and hot air are filtered. An air intake temperature probe, located inside the air filter, sends the carburetor inlet temperature to the EPM.

Ignition system

The engine has a dual-plug, mixed ignition system comprising:
- One magneto with constant timing,
- One solid-state electronic capacitor-discharge system, with variable timing.

The electronic system is direct-fed by the battery through a dedicated circuit breaker, located on the cabin breaker panel.
Cooling system

The engine is air-cooled, with an additional oil cooler. Cooling air enters the upper cowling plenum around the mast and gearbox. It is forced by a squirrel-cage blower, directly driven by the engine. Warm air is exhausted below the engine.

Fuel system

The fuel system comprises:
- a single, crash-resistant fuel tank,
- an submerged electric booster pump,
- the engine-driven pump,
- a shut-down valve,
- a gascolator.
Electrical circuit

The electrical systems are powered by a 12 V, 25 ampere-hour battery located in the left engine compartment, and a 13.7 V, 60 A alternator controlled by a voltage regulator.

A main breaker panel is provided in the cabin, and a secondary breaker panel is located inside the battery shelter.

Various switches are located on the instrument panel. The MASTER switch disconnects all the systems from the battery except:
- NR lights (BARC) backup,
- PLASMA ignition system,
- Doors remote control,
- the 13.7 V Auxiliary power socket,
- Some supplemental equipment (see Section 9).

Starting protections

On ground, before clutching, the system prevents from cranking the engine if:
- It is already running and cranking switched has been released for more than 80 seconds,
- The anti-theft system is activated and doors are locked through remote control (whatever actual lock position since they can be manually unlocked from inside).

During flight, the anti-theft system is disabled to permit engine restart in any situation.

Clutching feature

Clutching is disabled when the rotor brake is applied or seized.

Switches

The instrument panel presents a row of 8 switches, identified by an icon and their function:
Approved under DOA EASA.21J.211

Note: In case of additional equipment, refer to corresponding supplement in Section 9 for wiring description.
Breaker panel

The breaker panel is located on the cabin bulkhead between the two seats. The breakers are marked to indicate their function. They are of push-pull type.

Caution: Some systems are grouped on the same breaker.
If a circuit breaker pops-off, wait a few seconds before resetting it. Do not try twice.

The breakers value is given in amperes on the breakers.

Note 1: The Plasma is the only direct battery breaker on the panel. Other direct battery breakers are located in the battery shelter (refer to next page).

Note 2: Radio/Avionics breaker value and number vary depending on radio/avionics configuration. In case of additional equipment, refer to corresponding supplement in Section 9 for breaker panel description.
Battery breakers

Four breakers are located in the battery shelter, two of which are in direct battery:

- Remote door locking,
- “Magneto disabling during cranking” function
- 13.7 V Aux. socket
 (direct battery)

Note: They are “push” breakers except for the Auxiliaries one (refer to page 7-19).

Instrument panel and console

The standard flight instruments include airspeed indicator, altimeter, vertical speed indicator, magnetic compass and the EPM.

Space is available for one additional conventional instrument.

Refer to Night VFR supplement (Section 9) for wide instrument panel.

The basic avionics stack includes a VHF transceiver, transponder and an intercom.

Space is available for additional equipment.

Emergency locating transmitter

The ELT is located inside the luggage compartment. It is attached to the main bulkhead by a strap in the lower corner.

The ELT switch should be in ARMED position. Then the 3-position switch on the breaker panel can be used for remote control:

- ON (transmission) enables manual activation of the ELT,
- ARMED : stand by mode to enable automatic activation by the shock sensor. Unless there is an emergency, the switch must stay in that position.

For additional features, refer to ELT operation manual.
Electronic Pilot Monitor - EPM

Flight screen

- MLI: Multiple limit indicator
- Engine and rotor speed indicator
- Fuel gage / fuel flow
- PWR
- 86%
- 530 RPM
- 400
- 450
- 500
- 550
- #1 FUEL
- 2.3 psi
- 89
- 190
- 59°F
- CANB.
- 59°F
- CHT
- 453
- 68
- OIL T
- OIL P
- 09:41
- 0:02:38
- EGT
- Fire alarm location
- #1
- #2
- #3
- #4
- #5

- Carburetor temperature
- Cylinder head temperature
- Engine oil temperature
- Engine oil pressure
- Exhaust gas temperature
- CO alarm
- Clock
- Flight time / Stopwatch (CHRONO)
- Battery charging rate
- Outside air temperature
- Magnetic Chips and carburetor heating message box
- Carburetor heat indicator
- Numerical display:
 - Green arc: 530
 - Yellow arc: 500
 - Red arc: 445
 - Failed parameter: XXX
 - MLI in degraded mode: 86%

Alarm example: CO
Starting sequence

The EPM is powered through the MASTER switch. The functioning synoptic after switching on is as follows:

- **System startup** – logo displayed
- **Welcome page** – software releases
- **Flight log page**
- **Sensors test and alarms page**
- **Flight screen**

Configuration page

Hot start

Note: Hot start is defined by “Rotor in flying mode” signal (refer to page 7-17).

After an unexpected power cut in this condition, the EPM flight screen recovers within seconds.

Restart in the welcome page can be done by cutting power off on the ground, with a low rotor speed (out of “flying mode”).

Flight log page

This page presents, for each of the last 36 flights:
- The date and time of the engine start-up,
- The technical time (refer to page 7-14),
- The flight time (refer to page 7-14),
- The average fuel consumption (refer to page 7-15),
- The fuel quantity added since previous flight.

<table>
<thead>
<tr>
<th>Start</th>
<th>Tech. time</th>
<th>Flight time</th>
<th>Average cons.</th>
<th>Added fuel</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30/03/15</td>
<td>12:17</td>
<td>1:09</td>
<td>1:12</td>
<td>37.8</td>
<td>-</td>
</tr>
<tr>
<td>30/03/15</td>
<td>10:02</td>
<td>1:05</td>
<td>1:06</td>
<td>37.1</td>
<td>- +50</td>
</tr>
<tr>
<td>30/03/15</td>
<td>09:40</td>
<td>0:02</td>
<td>0:04</td>
<td>17.3</td>
<td>- +30</td>
</tr>
<tr>
<td>30/03/15</td>
<td>09:32</td>
<td>-</td>
<td>0:02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28/03/15</td>
<td>17:02</td>
<td>0:34</td>
<td>0:40</td>
<td>36.8</td>
<td>- +8</td>
</tr>
<tr>
<td>28/03/15</td>
<td>15:21</td>
<td>1:06</td>
<td>1:18</td>
<td>31.5</td>
<td>- +8</td>
</tr>
<tr>
<td>28/03/15</td>
<td>11:12</td>
<td>1:01</td>
<td>1:03</td>
<td>35.6</td>
<td>- +62</td>
</tr>
<tr>
<td>28/03/15</td>
<td>10:02</td>
<td>1:10</td>
<td>1:13</td>
<td>34.2</td>
<td>-</td>
</tr>
<tr>
<td>25/03/15</td>
<td>13:45</td>
<td>0:51</td>
<td>0:55</td>
<td>37.0</td>
<td>- +66</td>
</tr>
<tr>
<td>25/03/15</td>
<td>13:20</td>
<td>0:06</td>
<td>0:10</td>
<td>26.4</td>
<td>- -21</td>
</tr>
<tr>
<td>20/03/15</td>
<td>21:03</td>
<td>0:55</td>
<td>1:05</td>
<td>37.5</td>
<td>- +75</td>
</tr>
<tr>
<td>20/03/15</td>
<td>18:15</td>
<td>1:57</td>
<td>2:00</td>
<td>40.3</td>
<td>- +50</td>
</tr>
<tr>
<td>20/03/15</td>
<td>17:33</td>
<td>0:17</td>
<td>0:38</td>
<td>18.5</td>
<td>- +94</td>
</tr>
<tr>
<td>20/03/15</td>
<td>15:55</td>
<td>-</td>
<td>0:27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19/03/15</td>
<td>11:01</td>
<td>2:09</td>
<td>2:14</td>
<td>39.4</td>
<td>- +94</td>
</tr>
<tr>
<td>19/03/15</td>
<td>09:38</td>
<td>0:56</td>
<td>1:12</td>
<td>34.1</td>
<td>- +14</td>
</tr>
<tr>
<td>19/03/15</td>
<td>08:10</td>
<td>0:50</td>
<td>1:00</td>
<td>38.5</td>
<td>- +14</td>
</tr>
<tr>
<td>19/03/15</td>
<td>07:56</td>
<td>0:01</td>
<td>0:08</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Configuration and settings page:

Note: Brightness equalization with NAV. light ON adjusts relative instrument panel lighting. With NAV. light OFF, it adjusts relative EAN brightness.

Sensors and alarms test page:

The amber caution icons indicate failures and alarms that were detected during the last flight. The amber "FAILED" indicates a line/sensor failure during the self-test. Note: it is important to distinguish between MGB/TGB chips line failure (left column) and MGB/TGB Alarm triggering (right column).
Start indicator

In START mode, MLI indicates the throttle position (blue arrow) to assist the pilot to start the engine.

Mode deactivation when NR ≥ 420 RPM
Mode reactivation when NR ≤ 300 RPM

Clock - Stopwatch - Flight time counter

The clock is a continuous display. 12 or 24-hour format can be selected through configuration page.

The technical flight time counter is counting the time spent from NR ≥ 450 RPM, and until NR ≤ 400 RPM.
It discounts the warming, cooling and briefing times in a flight.
Its display is frozen when NR drops below 400 RPM, and is reset zero only on the next flight, when NR increases above 450 RPM.
The flight time is counted when rotor is turning (from and until NR = 100 RPM). It is not displayed on main page.

At EPM shutdown, technical and flight times are recorded in the flight log pages (refer to page 7-12). Average fuel flow logged is counted with respect to flight time.

The stopwatch can be activated and started instantly by pressing the #1 key once. It then replaces the flight time display.
The flight time display comes back after 20 s of stopwatch being inactive at zero, or by pressing #2 key from stopped state.
Fuel flow modes

Three different fuel flow display modes can be selected, by pressing the #3 Key cyclically:

- Remaining flight time
- Instantaneous fuel flow
- Average fuel flow

Remaining flight time

- Standard mode at startup
- Compute approximate flight time to starvation, based on instantaneous fuel flow **averaged about one minute**
- Displays -:-- during 2 min after startup

Instantaneous fuel flow

- Automatically displayed when approximate fuel quantity is **below 10 liters** (2.6 U.S. gal)

Warning: Do not rely on fuel quantity indication when caution light is ON or EPM warning is active.

Average fuel flow

- Calculate average flow since flight start, based on flight time counter
- Displays -.- during 2 min after startup
- Value at the end of flight is stored in log page
Carburetor heat

The Cabri is equipped with a two-mode carburetor heat:

- **Normal automatic mode** (switch on AUTO): the EPM monitors carburetor temperature and controls the heating valve to keep it outside the yellow zone,
- **Manual / test mode** (switch on HOT or COLD): The pilot manually controls the valve, overriding the EPM.

Indicator

A four-brick indicator informs the pilot of the amount of carburetor heating actually measured at carburetor inlet.

Full carburetor heat is divided in four steps, each represented by one brick.

Note 1: During ground run or at low power setting, with a warm engine, T. induction may be biased by carburetor body heat radiation. For this reason, a brick can appear whereas the heating valve is closed.

Note 2: - In automatic mode, the EPM gradually opens the valve as needed to maintain T_{carb} out of the yellow zone. The amount of heating is given by the indicator.
- In manual mode, the pilot can either completely open (HOT) or completely close (COLD) the valve. When on HOT, all four bricks might not be lighted, depending on environmental conditions.

Note 3: Conditions conducive to carburetor icing are:
- High humidity, low temperature,
- Operating near water,
- Moderate to low power setting.
BARC

BARC (Fuel and rotor alarm device). It is designed as an alternate mean in case of EPM failure.
It should be preferred in case of doubt.

When the MASTER is switched ON, the BARC conducts a testing sequence for caution / warning lights on the instrument panel, and the rotor speed horn.
In order to reinitiate the testing sequence, the MASTER should be switched-off during 45 seconds (make also sure that NR switch is on MAIN).

In case of an electrical bus failure, the BARC can be switched to a direct battery backup supply.

Main and backup modes

- **Continuous**
 - Power-off maximum NR threshold
 - NR ≥ 594 RPM
 - Intermittent horn

- **Flashing**
 - Power-on maximum NR (red limit)
 - NR > 540 RPM

- **Flashing**
 - Power-on minimum NR (red limit)
 - NR < 515 RPM

- **Continuous**
 - Power-off minimum NR threshold
 - NR ≤ 466 RPM
 - Continuous horn

Backup mode only

- **Green NR arc**
 - 515 RPM ≤ NR ≤ 540 RPM
 - Also comes ON at non-flying NR to prevent from draining the battery low.

“Rotor in flying mode” signal

- Signal activation when NR ≥ 450 RPM
- Signal deactivation when NR ≤ 400 RPM
Switch functions:

- **Backup mode**: BARC is powered directly by the battery. Central green light is active.
- **Main mode**: Normal operation. Green light is inactive.
- **Mute**: Mutes the continuous NR horn (self-reactivation).

LOW FUEL functions:

- LOW FUEL light lights on when independent sensor is set off (less than 12 L).
- Lighting is signaled by a short tone.
- Caution light should be preferred to EPM indication in case of doubt.

Other equipment

Pitot - Static system

- The Pitot tube is non-heated. It is located under the helicopter belly.
- The static port is located just aft of it.

Engine governor

- An electric engine governor helps the pilot control the engine speed. When engaged, it acts on the twist grip to control throttle.

- Once switched-on, the governor engages above 2000 RPM (NR = 400 RPM), and self-disengages below.

- The pilot can disengage it by two ways:
 - Using the GOV switch located on the tip of the collective stick. The GOV OFF light then comes on.
 - Forcing the twist-grip to NM = 2000 RPM, for an engine failure simulation.

- At any time, a friction clutch in the governor motor enables the pilot to overtake it by acting on the twist grip. The pilot can easily disengage the governor while overtaking its action.
Doors lock / Anti-theft

Remote doors lock is provided by a small radio transmitter. It uses a radio security-code to control the cabin doors locks, and enable/disable the engine starter.

Note: The starter is enabled when the “Rotor in flying mode” signal is active (see page 7-17), whatever the antitheft state.

The antitheft can be disabled (starter enabled) if not needed:
- Peel-off the CODE label on the left side of the central console, below the instrument console. Locate the small 8-switch line,
- Key the 8-bit helicopter individual security code: 1 is up, 0 is down
- To activate the antitheft back, just scramble the switches.

If the transmitter is not operative, following procedure permits to fly:
- Locate the backup key lock on the right firewall, above the Gascolator,
- Open the luggage door, using the backup key,
- From the luggage door, reach the right cabin door lock,
- From the right seat, open the left door lock,
- Use above procedure to disable the anti-theft.

Note: The remote door locking circuit has a very small standby current drain. However, when storing the helicopter for more than a month, pull the AUXILIARIES battery breaker, inside the battery shelter.

Lights

The helicopter is equipped with:
- a strobe light atop vertical fin,
- navigation lights on fuselage sides,
- a landing light in the nose.

Refer to Section 9 Night VFR for optional cabin lights.
Cabin and amenities

Luggage compartments

A 200 liter luggage compartment is provided in the right side of the fuselage.
It can accept two standard trolley cabin suitcases.
It is accessible from the outside, through a hinged door, and from the cabin through a small access hole, limited to soft objects.

Another luggage compartment is provided in the cabin, to stow the removable passenger controls, and some small cabin luggage: camera, drink, etc.
It is accessible from a small door in front of the passenger pedals. It features a cigarette-lighter socket for auxiliary power output.

Soft luggage like clothes can be stowed under the stroking seats.

Ventilation and heating

Each door has an adjustable fresh air vent.
For a better ventilation at lower airspeeds, and particularly in a hover, doors must be partially opened during flight using the cord strap.

A cabin heater / defogger is provided. It takes its air from the engine cooling blower.
The control knob is located between the two seats, on the central console.
In case of fire, shutting the heater off prevents fire from crossing the firewall through heating system.
Section 8 Handling and servicing

GENERAL .. 8-1
FUEL .. 8-1
ENGINE OIL ... 8-1
GEARBOXES OIL ... 8-1
GROUND HANDLING ... 8-1
PARKING AND TIE-DOWN .. 8-2
JUMP-STARTING THE ENGINE .. 8-2
DOORS REMOVAL AND INSTALLATION ... 8-2
General
This section outlines procedures recommended for handling and maintaining the Cabri G2. Every Cabri G2 owner should stay in contact with Hélicoptères Guimbal or approved source to obtain the latest service and maintenance information.

Fuel
Refer to page 2-5 for approved fuels.
Refueling while the engine or the rotor are turning is forbidden.
Fuel tank may be topped-off. A slight increase in maximum tank capacity is possible by refueling with the left ground handling wheel installed alone.
Fuel gage will still function in this case, with the same accuracy.

Engine oil
Refer to page 2-5 for approved oil types and quantities.
Check oil level with the dipstick.

Gearboxes oil
Refer to page 2-6 for approved oil.
For both main and tail gearboxes:
Check oil level while helicopter is sitting on a horizontal surface, without ground handling wheels.
Add oil when level is below half level.

Ground handling
Use only approved ground handling wheels on dedicated attachment points.
Use the vertical tail gearbox support tube as a handle to raise the helicopter nose and maneuver.

Caution: Do not use the shroud structure as a handle. The tail rotor blades may be damaged and could cause fingers injury.

Additional people can push the helicopter on the engine cowlings or main gear bow.
Parking and tie-down

Parking the helicopter on a soft surface may cause it to tilt back due to aft center of gravity when empty. In case of doubt, for long time parking, place a hard piece of wood beneath the skid aft tips before removing the wheels.

Tie-down should only be done by straps attaching the landing gear. Starting S/N 1045 (MOD 12-010), a specific tie down ring is located on the rear bow fitting.

Avoid leaving the helicopter exposed to direct sunlight without shielding the canopy with external cover or internal survival blanket.

Tie the blades with appropriate straps in case of strong wind or high gusts. Keep the straps loose to avoid stressing the blades.

Jump-starting the engine

Jump-starting the engine is an acceptable practice in case of a low battery. Only use 12V lead acid battery for jump starting. Proceed in following order:
1. Connect the red cable to helicopter battery plus,
2. Connect it to the external battery plus,
3. Connect the black cable to helicopter battery ground,
4. Connect it to the external battery ground,
5. Start the engine (with left cowl ing open),
6. Remove in opposite order.

Caution: a dead battery is not airworthy and should not be jump started.

Doors removal and installation

Starting S/N 1066 or retrofitted with SB14-005, doors have self-locking hinges, requiring no pin.

Door removal:
1. Open the door,
2. Remove the small circular locking clip from gas spring attachment on the fuselage side. Snap the rod end off,
3. Open the door passed the normal opening to free the locking tongue. Slide off.

Caution: Always put your hand between the door and the frame next to the lower hinge to prevent scratching the windshield post paint.
Door installation:
1. Position the door wide open,
2. Engage the lower pin which is longer, then engage the upper pin,
3. Snap the gas spring rod end on its sphere, and install the small locking pin in the rod end.

For initial design, without self-locking hinges, the procedure is as follows:

Door removal:
1. Open the door,
2. Remove the small circular locking clip from gas spring attachment on the fuselage side. Snap the rod end off,
3. Remove the two hinges lock pins, and save the washers,
4. Slide the door off.

Door installation:
1. Install the door, and check the plastic bushings are in place,
2. Install one washer and one lock pin on each hinge.

Note: The lower hinge has its plastic bushing inverted, to take the upward thrust from the gas spring. The washer is then important.

3. Snap the gas spring rod end on its sphere, and install the small locking pin in the rod end.

Caution: Never install the gas spring without the hinge pins: the gas spring exerts an upward force that would eject the door. The gas spring should be installed in the right direction: rod facing inside/forward, body on the door side.
Comfort in Autorotation Better with Rotor Inertia